• Title/Summary/Keyword: Image Based Vehicle Detection

Search Result 268, Processing Time 0.027 seconds

Vision-Based Indoor Localization Using Artificial Landmarks and Natural Features on the Ceiling with Optical Flow and a Kalman Filter

  • Rusdinar, Angga;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • This paper proposes a vision-based indoor localization method for autonomous vehicles. A single upward-facing digital camera was mounted on an autonomous vehicle and used as a vision sensor to identify artificial landmarks and any natural corner features. An interest point detector was used to find the natural features. Using an optical flow detection algorithm, information related to the direction and vehicle translation was defined. This information was used to track the vehicle movements. Random noise related to uneven light disrupted the calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real environment. The image processing method could recognize the landmarks precisely, while the Kalman filter algorithm could estimate the vehicle's position accurately. The experimental results confirmed that the proposed approaches can be implemented in practical situations.

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

Road Image Enhancement Method for Vision-based Intelligent Vehicle (비전기반 지능형 자동차를 위한 도로 주행 영상 개선 방법)

  • Kim, Seunggyu;Park, Daeyong;Choi, Yeongwoo
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.1
    • /
    • pp.51-71
    • /
    • 2014
  • This paper presents an image enhancement method in real road traffic scenes. The images captured by the camera on the car cannot keep the color constancy as illumination or weather changes. In the real environment, these problems are more worse at back light conditions and at night that make more difficult to the applications of the vision-based intelligent vehicles. Using the existing image enhancement methods without considering the position and intensity of the light source and their geometric relations the image quality can even be deteriorated. Thus, this paper presents a fast and effective method for image enhancement resembling human cognitive system which consists of 1) image preprocessing, 2) color-contrast evaluation, 3) alpha blending of over/under estimated image and preprocessed image. An input image is first preprocessed by gamma correction, and then enhanced by an Automatic Color Enhancement(ACE) method. Finally, the preprocessed image and the ACE image are blended to improve image visibility. The proposed method shows drastically enhanced results visually, and improves the performance in traffic sign detection of the vision based intelligent vehicle applications.

A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction (철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구)

  • Park, Younghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.511-523
    • /
    • 2023
  • Research on the integration of unmanned aerial vehicles and deep learning for reinforced concrete damage detection is actively underway. Convolutional neural networks have a high impact on the performance of image classification, detection, and segmentation as backbones. The MobileNet, a pre-trained convolutional neural network, is efficient as a backbone for an unmanned aerial vehicle-based damage detection model because it can achieve sufficient accuracy with low computational complexity. Analyzing vanilla convolutional neural networks and MobileNet under various conditions, MobileNet was evaluated to have a verification accuracy 6.0~9.0% higher than vanilla convolutional neural networks with 15.9~22.9% lower computational complexity. MobileNetV2, MobileNetV3Large and MobileNetV3Small showed almost identical maximum verification accuracy, and the optimal conditions for MobileNet's reinforced concrete damage image feature extraction were analyzed to be the optimizer RMSprop, no dropout, and average pooling. The maximum validation accuracy of 75.49% for 7 types of damage detection based on MobilenetV2 derived in this study can be improved by image accumulation and continuous learning.

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Moving Window Technique for Obstacle Detection Using Neural Networks (신경망을 사용한 장애물 검출을 위한 Moving Window 기법)

  • 주재율;회승욱;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.164-164
    • /
    • 2000
  • This paper proposes a moving window technique that extracts lanes and vehicles using the images captured by a CCD camera equipped inside an automobile in real time. For the purpose, first of all the optimal size of moving window is determined based upon speed of the vehicle, road curvature, and camera parameters. Within the moving windows that are dynamically changing, lanes and vehicles are extracted, and the vehicles within the driving lanes are classified as obstacles. Assuming highway driving, there are two sorts of image-objects within the driving lanes: one is ground mark to show the limit speed or some information for driving, and the other is the vehicle as an obstacle. Using characteristics of three-dimension objects, a neural network can be trained to distinguish the vehicle from ground mark. When it is recognized as an obstacle, the distance from the camera to the front vehicle can be calculated with the aids of database that keeps the models of automobiles on the highway. The correctness of this measurement is verified through the experiments comparing with the radar and laser sensor data.

  • PDF

Video Road Vehicle Detection and Tracking based on OpenCV

  • Hou, Wei;Wu, Zhenzhen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.226-233
    • /
    • 2022
  • Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.

A Study on Target Selection from Seeker Image of Aerial Vehicle in Sea Environment (해상 탐지 영상에서의 비행체 표적 선정에 관한 연구)

  • Kim, Ki-Bum;Baek, In-Hye;Kwon, Ki-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.708-716
    • /
    • 2017
  • We deal with the target selection in seeker-detection image through network, using the detection information from aerial vehicle and the target information from surveillance and reconnaissance system. Especially, we constrain the sea battle environment, where it is difficult to perform scene-matching rather than land. In this paper, we suggest the target selection algorithm based on the confidence estimation with respect to distance and size. In detail, we propose the generation method of reference point for distance evaluation, and we investigate the effect of pixel margin and target course for size evaluation. Finally, the proposed algorithm is simulated and analyzed through several scenarios.

Camera Calibration Method for an Automotive Safety Driving System (자동차 안전운전 보조 시스템에 응용할 수 있는 카메라 캘리브레이션 방법)

  • Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.621-626
    • /
    • 2015
  • This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.

Head/Rear Lamp Detection for Stop and Wrong Way Vehicle in the Tunnel (터널 내 정차 및 역주행 차량 인식을 위한 전조등과 후미등 검출 알고리즘)

  • Kim, Gyu-Yeong;Do, Jin-Kyu;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.601-602
    • /
    • 2011
  • In this paper, we propose head/rear lamp detection algorithm for stopped and wrong way vehicle recognition. It is shown that our algorithm detected vehicles based on the experimental analysis about the color information of vehicle's lamps. The simulation results show the detection rate about stopped and wrong way vehicles is achieved over 94% and 96% in the tunnel HD(High Definition) video image.

  • PDF