International Journal of Fuzzy Logic and Intelligent Systems
/
v.13
no.2
/
pp.133-139
/
2013
This paper proposes a vision-based indoor localization method for autonomous vehicles. A single upward-facing digital camera was mounted on an autonomous vehicle and used as a vision sensor to identify artificial landmarks and any natural corner features. An interest point detector was used to find the natural features. Using an optical flow detection algorithm, information related to the direction and vehicle translation was defined. This information was used to track the vehicle movements. Random noise related to uneven light disrupted the calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real environment. The image processing method could recognize the landmarks precisely, while the Kalman filter algorithm could estimate the vehicle's position accurately. The experimental results confirmed that the proposed approaches can be implemented in practical situations.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.9
/
pp.4419-4441
/
2016
A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.
This paper presents an image enhancement method in real road traffic scenes. The images captured by the camera on the car cannot keep the color constancy as illumination or weather changes. In the real environment, these problems are more worse at back light conditions and at night that make more difficult to the applications of the vision-based intelligent vehicles. Using the existing image enhancement methods without considering the position and intensity of the light source and their geometric relations the image quality can even be deteriorated. Thus, this paper presents a fast and effective method for image enhancement resembling human cognitive system which consists of 1) image preprocessing, 2) color-contrast evaluation, 3) alpha blending of over/under estimated image and preprocessed image. An input image is first preprocessed by gamma correction, and then enhanced by an Automatic Color Enhancement(ACE) method. Finally, the preprocessed image and the ACE image are blended to improve image visibility. The proposed method shows drastically enhanced results visually, and improves the performance in traffic sign detection of the vision based intelligent vehicle applications.
KSCE Journal of Civil and Environmental Engineering Research
/
v.43
no.4
/
pp.511-523
/
2023
Research on the integration of unmanned aerial vehicles and deep learning for reinforced concrete damage detection is actively underway. Convolutional neural networks have a high impact on the performance of image classification, detection, and segmentation as backbones. The MobileNet, a pre-trained convolutional neural network, is efficient as a backbone for an unmanned aerial vehicle-based damage detection model because it can achieve sufficient accuracy with low computational complexity. Analyzing vanilla convolutional neural networks and MobileNet under various conditions, MobileNet was evaluated to have a verification accuracy 6.0~9.0% higher than vanilla convolutional neural networks with 15.9~22.9% lower computational complexity. MobileNetV2, MobileNetV3Large and MobileNetV3Small showed almost identical maximum verification accuracy, and the optimal conditions for MobileNet's reinforced concrete damage image feature extraction were analyzed to be the optimizer RMSprop, no dropout, and average pooling. The maximum validation accuracy of 75.49% for 7 types of damage detection based on MobilenetV2 derived in this study can be improved by image accumulation and continuous learning.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.429-431
/
2012
Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.
This paper proposes a moving window technique that extracts lanes and vehicles using the images captured by a CCD camera equipped inside an automobile in real time. For the purpose, first of all the optimal size of moving window is determined based upon speed of the vehicle, road curvature, and camera parameters. Within the moving windows that are dynamically changing, lanes and vehicles are extracted, and the vehicles within the driving lanes are classified as obstacles. Assuming highway driving, there are two sorts of image-objects within the driving lanes: one is ground mark to show the limit speed or some information for driving, and the other is the vehicle as an obstacle. Using characteristics of three-dimension objects, a neural network can be trained to distinguish the vehicle from ground mark. When it is recognized as an obstacle, the distance from the camera to the front vehicle can be calculated with the aids of database that keeps the models of automobiles on the highway. The correctness of this measurement is verified through the experiments comparing with the radar and laser sensor data.
Journal of information and communication convergence engineering
/
v.20
no.3
/
pp.226-233
/
2022
Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.
Journal of the Korea Institute of Military Science and Technology
/
v.20
no.5
/
pp.708-716
/
2017
We deal with the target selection in seeker-detection image through network, using the detection information from aerial vehicle and the target information from surveillance and reconnaissance system. Especially, we constrain the sea battle environment, where it is difficult to perform scene-matching rather than land. In this paper, we suggest the target selection algorithm based on the confidence estimation with respect to distance and size. In detail, we propose the generation method of reference point for distance evaluation, and we investigate the effect of pixel margin and target course for size evaluation. Finally, the proposed algorithm is simulated and analyzed through several scenarios.
Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
Journal of Institute of Control, Robotics and Systems
/
v.21
no.7
/
pp.621-626
/
2015
This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.
Kim, Gyu-Yeong;Do, Jin-Kyu;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.10a
/
pp.601-602
/
2011
In this paper, we propose head/rear lamp detection algorithm for stopped and wrong way vehicle recognition. It is shown that our algorithm detected vehicles based on the experimental analysis about the color information of vehicle's lamps. The simulation results show the detection rate about stopped and wrong way vehicles is achieved over 94% and 96% in the tunnel HD(High Definition) video image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.