• Title/Summary/Keyword: Image Based Vehicle Detection

Search Result 267, Processing Time 0.024 seconds

Vehicle Detection at Night Based on Style Transfer Image Enhancement

  • Jianing Shen;Rong Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.663-672
    • /
    • 2023
  • Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.

A Hardware/Software Codesign for Image Processing in a Processor Based Embedded System for Vehicle Detection

  • Moon, Ho-Sun;Moon, Sung-Hwan;Seo, Young-Bin;Kim, Yong-Deak
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.27-31
    • /
    • 2005
  • Vehicle detector system based on image processing technology is a significant domain of ITS (Intelligent Transportation System) applications due to its advantages such as low installation cost and it does not obstruct traffic during the installation of vehicle detection systems on the road[1]. In this paper, we propose architecture for vehicle detection by using image processing. The architecture consists of two main parts such as an image processing part, using high speed FPGA, decision and calculation part using CPU. The CPU part takes care of total system control and synthetic decision of vehicle detection. The FPGA part assumes charge of input and output image using video encoder and decoder, image classification and image memory control.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Multi-spectral Vehicle Detection based on Convolutional Neural Network

  • Choi, Sungil;Kim, Seungryong;Park, Kihong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1909-1918
    • /
    • 2016
  • This paper presents a unified framework for joint Convolutional Neural Network (CNN) based vehicle detection by leveraging multi-spectral image pairs. With the observation that under challenging environments such as night vision and limited light source, vehicle detection in a single color image can be more tractable by using additional far-infrared (FIR) image, we design joint CNN architecture for both RGB and FIR image pairs. We assume that a score map from joint CNN applied to overall image can be considered as confidence of vehicle existence. To deal with various scale ratios of vehicle candidates, multi-scale images are first generated scaling an image according to possible scale ratio of vehicles. The vehicle candidates are then detected on local maximal on each score maps. The generation of overlapped candidates is prevented with non-maximal suppression on multi-scale score maps. The experimental results show that our framework have superior performance than conventional methods with a joint framework of multi-spectral image pairs reducing false positive generated by conventional vehicle detection framework using only single color image.

Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning (머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템)

  • Kim, Sanghyuk;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

  • Omar, Wael;Oh, Youngon;Chung, Jinwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.747-761
    • /
    • 2021
  • With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy. The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

CAR DETECTION IN COLOR AERIAL IMAGE USING IMAGE OBJECT SEGMENTATION APPROACH

  • Lee, Jung-Bin;Kim, Jong-Hong;Kim, Jin-Woo;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.260-262
    • /
    • 2006
  • One of future remote sensing techniques for transportation application is vehicle detection from the space, which could be the basis of measuring traffic volume and recognizing traffic condition in the future. This paper introduces an approach to vehicle detection using image object segmentation approach. The object-oriented image processing is particularly beneficial to high-resolution image classification of urban area, which suffers from noisy components in general. The project site was Dae-Jeon metropolitan area and a set of true color aerial images at 10cm resolution was used for the test. Authors investigated a variety of parameters such as scale, color, and shape and produced a customized solution for vehicle detection, which is based on a knowledge-based hierarchical model in the environment of eCognition. The highest tumbling block of the vehicle detection in the given data sets was to discriminate vehicles in dark color from new black asphalt pavement. Except for the cases, the overall accuracy was over 90%.

  • PDF

A New Vehicle Detection Method based on Color Integral Histogram

  • Hwang, Jae-Pil;Ryu, Kyung-Jin;Park, Seong-Keun;Kim, Eun-Tai;Kang, Hyung-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.248-253
    • /
    • 2008
  • In this paper, a novel vehicle detection algorithm is proposed that utilizes the color histogram of the image. The color histogram is used to search the image for regions with shadow, block symmetry, and block non-homogeneity, thereby detecting the vehicle region. First, an integral histogram of the input image is computed to decrease the amount of required computation time for the block color histograms. Then, shadow detection is performed and the block symmetry and block non-homogeneity are checked in a cascade manner to detect the vehicle in the image. Finally, the proposed scheme is applied to both still images taken in a parking lot and an on-road video sequence to demonstrate its effectiveness.

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.