• 제목/요약/키워드: Image Artifacts Reduction

Search Result 88, Processing Time 0.025 seconds

Magnetic Resonance Imaging uses 3D Printed Material of Headset (Noise Reduction Effect) (자기공명영상 검사 시 3D 프린팅 재료를 이용한 헤드셋 연구 (소음저감 효과))

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2018
  • With the improvement of medical state, patients' expectations for the most advanced medical equipment are increasing. Particularly, Magnetic Resonance Image (MRI) is used as one of the core image diagnosis methods in all clinical area. However, it has been reported that many of patients who go through the examination suffer from anxiety to the severe noise level during the examination. In this study, both the noise reduction evaluation of headsets with sound-blocking materials added to existing sound-absorbing materials and the existence of sound blocking materials as artifacts on the examination image are tested. An MRI test noise is recorded as a speaker by cross-ordination the sound material (sponge) and the sound material (acrylic plate, copper plate, and 3D copper plate) inside the headset made from 3D pring. A quantitative assessment of headsets showed that the average headset value was 81.8 dB. The average dB value of the most soundproof material combination(Copper, acrylic plate, sponge, sponge) headsets on headsets with added charactering material was measured at 70.4 dB, and MRI showed that the copper was diamagnetic substance and excluded. The second most soundproof headset(Sponge, acrylic plate, 3D copper plate, sponge) was measured at 70.6 dB and MRI showed no artifacts. The same simulation of the material printed with a 3D copper PLA containing approximately 40 % copper powder resulted in no artifacts, therefore, the material output as a 3D printing was better suited for use. For MRI related research, the mutual development of 3D printing is highly anticipated.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Evaluation of O-MAR XD Technique for Reduction of Magnetic Susceptibility Artifact of Knee Implant (인공 무릎관절에서 자화율 인공물의 감소를 위한 O-MAR XD 기법의 평가)

  • Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.413-419
    • /
    • 2018
  • Magnetic Resonance Imaging for patients with metallic implant has poor image quality, and signal loss and artifacts including distortion can occur. The purpose of this study is to carry out a comparative evaluation on high receive bandwidth(hiBW), O-MAR, O-MAR XD to reduce artifacts in knee implant. To take MRI, 3.0T scanner and dual-source radiofrequency transmission were used. O-MAR XD technique's strong option showed a significant difference (p<0.001) with O-MAR XD technique's weak option, O-MAR and hiBW excluding the medium option. O-MAR XD's medium option had a significant difference (p<0.01) with O-MAR XD's weak, O-MAR and hiBW. O-MAR XD technique's weak option had a significant difference (p<0.01) with O-MAR XD's strong and medium options, O-MAR and hiBW. O-MAR technique had a significant difference (p<0.001) with strong, medium, weak options of O-MAR XD technique except for hiBW. HiBW had a significant difference (p<0.001) with strong, medium and weak options of O-MAR XD technique except for O-MAR. The results showed that O-MAR XD technique was more useful for MRI scan for patients with knee replacement surgery than traditional techniques such as hiBW or O-MAR, and susceptibility artifacts decreased more when O-MAR XD technique's strong or medium option was applied. Based on the results above, it is considered that it will be possible to acquire images whose susceptibility artifacts were highly decreased by using O-MAR XD technique's strong or medium option when conducting MRI for artificial knee joint and it will be helpful for checking and monitoring patients with knee joint replacement.

Regional Contrast Enhancement for Local Dimming Backlight on Small-sized Mobile Display

  • Chung, Jin-Young;Kim, Ki-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.972-974
    • /
    • 2009
  • This paper presents smart regional contrast enhancement technique of partitioned image for local dimming backlight on small-sized mobile display to reach two goals. One is to save the power consumption, and the other to improve contrast ratio of display image. Recently new advanced method is proposed, named local dimming method, that backlight LED is positioned on backside of the display panel. So it is important to partition an image by sub blocks and then post-processing independantly. This means regional contrast enhancement. After partitioning, we compare the mean luminance(Y) value of each sub-block image with the one of original whole image. If some blocks have the mean value lower than the one of whole image, they are processed with the proposed method and others are bypassed. Simultaneously the information of the processed blocks are transferred to BLC(Backlight LED Controller). And then the supply current of each backlight LED is reduced to realize the contrast ratio enhancement and at the same time to power consumption reduction. In addition, we verify this proposed method is free from blocking artifacts.

  • PDF

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Contrast enhancement of color images using modified error diffusion (변형된 오차확산을 이용한 컬러 영상의 콘트라스트 개선)

  • Lee, Ji-Won;Park, Rae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.651-661
    • /
    • 2008
  • This paper proposes a novel contrast enhancement (CE) algorithm for color images using the modified error diffusion (ED). After conventional color histogram equalization (HE), artifacts such as false contours are produced in the contrast enhanced image. The proposed CE algorithm using the modified ED consists of two parts: CE and ED. In the first part, a low-contrast input image is enhanced by the conventional HE method. In the second part, we use the modified ED algorithm. The inputs of the second part are the average and scaled difference images of the original color input image and the HE image, in which the scaled color difference image is diffused by the ED algorithm. In the proposed algorithm, the modified ED algorithm reduces the artifacts produced in the HE image, and increases the number of color levels. Computer simulations with a number of low-contrast color images show the effectiveness of the proposed CE method in terms of the visual quality as well as the probability mass function. It can be used as a post-processing for CE with simultaneous artifact reduction in various display devices.

Image Noise Reduction in Discrete Cosine Transform domain

  • Joo, Hyosun;Park, Junhee;Kim, Jeongtae;Lee, Byung-Uk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Image noise reduction in the frequency domain by thresholding is simple, but quite effective. Wavelet domain thresholding has been an active area of research but relatively little work has been published on DCT domain denoising. A novel method for determining the hard threshold for the DCT domain denoising is proposed. The low amplitude DCT coefficients are discarded until the cumulative sum of the discarded signal energy is comparable to that of noise in each DCT block. Cycle spinning is also applied to reduce block artifacts. The proposed method is quite effective and simple enough to be used in portable devices.

  • PDF

Coding Artifact Reduction for Block-based Image Compression (블록 기반 영상 압축을 위한 부호화 결함 감소)

  • Wee, Young-Cheul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.60-64
    • /
    • 2011
  • In this paper, we propose a new post-processing technique that removes blocking and ringing artifacts in Block discrete cosine transformation (BDCT)-coded images using bilateral filtering. The selection of filter parameters is a key issue in the application of a bilateral filter because it significantly affects the result. An efficient method of selecting the bilateral filter parameters is presented. The experimental results show that the proposed approach alleviates the artifacts efficiently in terms of PSNR, MSDS, and SSIM.

The Cause Analysis and Reduction Method of the FRC Noise Through a New Approach in TFT-LCD (TFT-LCD에서 새로운 접근을 통한 FRC Noise의 발생 원인 분석 및 저감 방법에 대한 연구)

  • Hwang, Jong-Hee;Kim, Hye-Jin;Choe, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1340-1345
    • /
    • 2010
  • FRC(Frame Rate Control) has been applied to the monitor and TV product as part of cost-saving in many flat panel display manufacturers. As FRC can represent the same number of gray scale level with bits of a smaller amount than bits of the input image data, it is widely used. However, FRC causes visual artifacts by using repeatedly pre-designed the FRC unit size of block pattern in display devices. Therefore, this paper analyzes the cause of the visual artifacts. And in order to improve them, it proposed the pattern arrangement of FRC unit blocks through frame rolling method as analytic solution for the first time. So, we could embody causes of FRC noise. Using the proposed structure, more robust pattern to FRC noise will be designed.

A New Approximate DCT Computation Based on Subband Decomposition and Its Application (서브밴드 분리에 근거한 새로운 근사 DCT 계산과 응용)

  • Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1329-1336
    • /
    • 1996
  • In many image compression applications, the discrete cosine transform (DCY) is well known for is highly efficient coding performance. However, it produces undesirable block artifacts in low-bit rate coding. In addition, in many practical applications, faster computation and easier VLST implementation of DCT coefficients are also important issues. The removal of the block artifacts and faster DCT computation are therefor of practical interest. In this paper, a modified DCTcomputation scheme was investigated, which provides a simple efficient solution to the reduction of the block artifacts while achieving faster computation. We have applied the new ap-proach to the low-bit rate coding and decoding of images. Simulation results on real images have verified the improved performance of the proposed method over the standar d method.

  • PDF