• Title/Summary/Keyword: Image Artifact

Search Result 392, Processing Time 0.02 seconds

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D T2* weighted Technique and Fat Suppressed 3D SPGR Technique when Examining MRI for Knee Joint Cartilage Assesment (슬관절 연골 평가를 위한 자기공명영상 검사 시 지방 신호 억제 3D T2* Weighted 기법과 지방 신호 억제 3D SPGR 기법의 비교 및 유용성 평가)

  • Kang, Sung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.219-225
    • /
    • 2016
  • In this study, for assessment of degenerative knee joint cartilage disease we acquired images by fat suppressed 3D spoiled gradient recalled (SPGR) and fat suppressed 3D $T2^*$ weighted imaging techniques. To do a quantitative evaluation, the knee joint cartilage was divided into medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage (LFC), lateral femoral cartilage (LFC) and patella cartilage (Pat) to measure their respective signal intensity values, signal-to-noise ratio, and contrast-to-noise ratio. As for the measured values, statistical significance between two techniques was verified by using Mann-Whitney U-Test. To do a qualitative evaluation, two radiologists have examined images by techniques after which image artifact, cartilage surface, tissue contrast, and depiction of lesion distinguishing were evaluated based on 4-point scaling (1: bad, 2: appropriate, 3: good, 4: excellent), and based on the result, statistical significance was verified by using Kappa-value Test. 3.0T MR system and HD T/R 8ch knee array coil were used to acquire images. As a result of a quantitative analysis, based on SNR values measured by using two imaging techniques, MFC, LFC, LTC, and Pat showed statistical significance (p < 0.05), but MTC did not (p > 0.05). As a result of verifying statistical significance for measured CNR value, MFC, LFC, and Pat showed statistical significance (p < 0.05), while MTC and LTC did not show statistical significance (p > 0.05). As a result of a qualitative analysis, by comparing mean values for evaluated image items, 3D $T2^*$ weighted Image has indicated a slightly higher value. As for conformance verification between the two observers by using Kappa-value test, all evaluated items have indicated statistically significant results (p < 0.05). 3D $T2^*$ weighted technique holds a clinical value equal to or superior to 3D SPGR technique with respect to evaluating images, such as distinguishing knee joint cartilages, comparing nearby tissues contrast, and distinguishing lesions.

Usefulness of Acoustic Noise Reduction in Brain MRI Using Quiet-T2 (뇌 자기공명영상에서 Quiet-T2 기법을 이용한 소음감소의 유용성)

  • Lee, SeJy;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-$T_2$ and $T_2$ sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-$T_2$ and $T_2$ was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-$T_2$, $T_2$ and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-$T_2$ and $T_2$. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by $15dB_A$ and $10dB_A$ on $T_2$ and Q-$T_2$ test. Also, the average value of heartbeat rate was lower in Q-$T_2$ for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-$T_2$. According to the qualitative analysis, the overall quality image of 59 case $T_2$ and Q-$T_2$ was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-$T_2$ is a promising technique for acoustic noise reduction and improved patient comfort.

Impact of Contrast agent for Attenuation Correction Using CT Scan in PET/CT System (PET/CT 시스템에서 CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son, Hye-Kyung;Turkington, Timothy G;Kwon, Yun-Young;Bong, Jung-Kyun;Jung, Hai-Jo;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.100-103
    • /
    • 2004
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG imaging. Various transmission density maps was generated with non-uniform enhancement of contrast agent, hypo-attenuating of contrast agent for tumor, different concentration of contrast agent, and so on. Attenuation correction was done with all transmission maps. In the experiments, we confirmed that attenuation coefficient was changed by concentration of contrast agent. From the simulation data, image quality of attenuation corrected images was affected by contrast agent and artifact was produced by contrast agent. These results indicated that the contrast agent should be used with a full understanding of its potential problem in PET/CT system.

  • PDF

Noninvasive Evaluation of Coronary Artery Bypass Graft Patency by Electron Beam Tomography (전자선 단층 촬영을 이용한 관상동맥 우회로 개존의 비침습적 평가)

  • 최규옥;김호석;조범구
    • Journal of Chest Surgery
    • /
    • v.32 no.8
    • /
    • pp.693-701
    • /
    • 1999
  • Recently non-invasive diagnostic imaging replaced the invasive catheter angiography in the diagnosis of vascular disease. Catheter methods are now almost confined to the purpose of intervention. Coronary artery or coronary artery bypass graft still needs catheter technique because of small diameter and the cardiac motion. The last challenge for radiologists in this domain is to obtain a non-invasive imaging. Electron beam tomography(EBT) for high temporal resolution is able to obtain a coronary arteriogram or coronary artery bypass graft (CABG), of which CABG imaging is quite useful for the evaluation of patency. In our experience as well as others, the accuracy of EBT angiogram in evaluating CABG patency revealed that the accuracy of patency of saphenous vein grafts(SVG) is high due to relatively wide lumen, short and straight course and less influence from cardiac motion. The sensitivity and specificity of patency of SVGs were 92%, 97% respectively in the prospective evaluat on and 100% each in the retrospective evaluation. A false positive and a false negative case are rudimentary errors in the initial learing period. In contrast the analysis of left internal mammary artery(LIMA) graft was difficult due to the inherent small size and the adjacent surgical clips provoking beam-hardening artifact; therefore, the method of combining 3 dimensional reconstruction and flow mode study was important in improving the accuracy of LIMA patency. The sensitivity and specificity of LIMA patency were 100% and 80% in both prospective and retrospective evaluation. Therefore, EBT angiography is an accurate non-invasive diagnostic modality for evaluating the patency of CABG, particularly in SVGs. The accuracy can be improved with the improvement of the EBT and the development of the image reconstruction software.

  • PDF

Adaptive Error Diffusion for Text Enhancement (문자 영역을 강조하기 위한 적응적 오차 확산법)

  • Kwon Jae-Hyun;Son Chang-Hwan;Park Tae-Yong;Cho Yang-Ho;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.9-16
    • /
    • 2006
  • This Paper proposes an adaptive error diffusioThis paper proposes an adaptive error diffusion algorithm for text enhancement followed by an efficient text segmentation that uses the maximum gradient difference (MGD). The gradients are calculated along with scan lines, and the MGD values are filled within a local window to merge the potential text segments. Isolated segments are then eliminated in the non-text region filtering process. After the left segmentation, a conventional error diffusion method is applied to the background, while the edge enhancement error diffusion is used for the text. Since it is inevitable that visually objectionable artifacts are generated when using two different halftoning algorithms, the gradual dilation is proposed to minimize the boundary artifacts in the segmented text blocks before halftoning. Sharpening based on the gradually dilated text region (GDTR) prevents the printing of successive dots around the text region boundaries. The error diffusion algorithm with edge enhancement is extended to halftone color images to sharpen the tort regions. The proposed adaptive error diffusion algorithm involves color halftoning that controls the amount of edge enhancement using a general error filter. The multiplicative edge enhancement parameters are selected based on the amount of edge sharpening and color difference. Plus, the additional error factor is introduced to reduce the dot elimination artifact generated by the edge enhancement error diffusion. By using the proposed algorithm, the text of a scanned image is sharper than that with a conventional error diffusion without changing background.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Evaluation of Spatial Uniformity about Resolution and Sensitivity of a 'fixed focusing type SPECT' (고정식 초점형 SPECT에 있어, 선예도와 감도의 공간 균일성에 대한 평가)

  • Kim, Jaeil;Lim, Jeongjin;Cho, Seongwook;Noh, Kyeongwoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2019
  • Purpose At now, there are many kind of dedicated heart SPECT machine in clinical nuclear medicine. Among those, the fixed focusing type SPECT can make a good quality, quantity image because a detectors of this SPECT arranged forward a special ROI and didn't rotate around of body. So, in this paper, we will evaluate a spatial uniformity about resolution and sensitivity at a same plane of a fixed focusing type SPECT. Materials and Methods We used D-SPECT as a fixed focusing type SPECT and Cario MD as a rotated parallel type SPECT to comparing each other. We injected $^{99m}Tc(14.8MBq/1cc)$ to 10 capillary tube (diameter=1mm), and we set those line sources a tfield of view of each SPECT. And then we acquired SPECT date, we applied are construction by recommended methods. By using two tomography images, we calculated a full width of half maximum as a resolution and total counts as a sensitivity, and we compared a CV (coefficientofvariation) values between two images as a spatial uniformity. Results In case of D-SPECT, a CV of resolution and sensitivity are 7.45%, 12.34%. In case of Cario MD, an CV of resolution and sensitivity are 12.49%, 21.84% Conclusion As a results, CV of resolution and sensitivity of a fixed focusing type SPECT is 67.75%, 77.00% higher than ones of a rotated parallel type SPECT. It means that a fixed focusing type SPECT is more uniformed, because this new SPECT can reduce a motion blur artifact by rotating detector around body, also all of detector that made by semiconductor arrange forward a special FOV like heart.

The Role of Double Inversion Recovery Imaging in Acute Ischemic Stroke

  • Choi, Na Young;Park, Soonchan;Lee, Chung Min;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.210-219
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate if double inversion recovery (DIR) imaging can have a role in the evaluation of brain ischemia, compared with diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Materials and Methods: Sixty-seven patients within 48 hours of onset, underwent MRI scans with FLAIR, DWI with b-value of 0 (B0) and $1000s/mm^2$, and DIR sequences. Patients were categorized into four groups: within three hours, three to six hours, six to 24 hours, and 24 to 48 hours after onset. Lesion-to-normal ratio (LNR) value was calculated and compared among all sequences within each group, by the Friedman test and conducted among all groups, for each sequence by the Kruskal-Wallis test. In qualitative assessment, signal intensity changes of DIR, B0, and FLAIR based on similarity with DWI and image quality of each sequence, were graded on a 3-point scale, respectively. Scores for detectability of lesions were compared by the McNemar's test. Results: LNR values from DWI were higher than DIR, but not statistically significant in all groups (P > 0.05). LNR values of DIR were significantly higher than FLAIR within 24 hours of onset (P < 0.05). LNR values were significantly different between, before, and after six hours onset time for DIR (P = 0.016), B0 (P = 0.008), and FLAIR (P = 0.018) but not for DWI (P = 0.051). Qualitative analysis demonstrated that detectability of DIR was higher, compared to that of FLAIR within 4.5 hours and six hours of onset (P < 0.05). Also, the DWI quality score was lower than that of DIR, particularly relative to infratentorial lesions. Conclusion: DIR provides higher detectability of hyperacute brain ischemia than B0 and FLAIR, and does not suffer from susceptibility artifact, unlike DWI. So, DIR can be used to replace evaluation of the FLAIR-DWI mismatch.

B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements

  • Gamble G.;Beaumont B.;Smith H.;Zorn J.;Sanders G.;Merrilees M.;MacMahon S.;Sharpe N.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02b
    • /
    • pp.169-179
    • /
    • 1994
  • B-mode ultrasound is being used to assess carotid atherosclerosis in epidemiological studies and clinical trials. Recently the interpretation of measurements made from ultrasound images has been questioned. This study examines the anatomical correlates of B-mode ultrasound of carotid arteries in vitro and in situ in cadavers. Twenty-seven segments of human carotid artery were collected at autopsy. pressure perfusion fixed in buffered 2.5% gluteraldehyde and 4% paraformaldehyde and imaged using an ATL UM-8 (10 MHz single crystal mechanical probe). Each artery was then frozen, sectioned and stained with van Gieson or elastin van Gieson. The thickness of the intima. media and adventitia were measured 'to an accuracy of 0.01 mm from histological sections using a calibrated eye graticule on a light microscope. Shrinkage artifact induced by histological preparation was determined to be 7.8%. Digitised ultra sound images of the artery wall were analysed off-line. The distance from the leading edge of the first interface ($LE_{1}$) to the leading edge of the second interface ($LE_2$) was measured using a dedicated programme. $LE_{1}$-$LE_{2}$ measurements were correlated against histological measurements corrected for shrinkage. Mean values for the far wall were: ultra sound $LE_{1}$-$LE_{2}$ (0.97 mm, S.D. 0.26), total wall thickness (1.05 mm, S.D. 0.37), adventitia (0.35 mm, S.D. 0.16), media (0.61 mm, S.D. 0.18). intima (0.09 mm, S.D. 0.13). Ultrasound measurements corresponded best with total wall thickness, rather than elastin or the intima-media complex. Excision of part of the intima plus media or removal of the adventitia resulted in a corresponding decrease in the $LE_{1}$-$LE_{2}$ distance of the B-mode image. Furthermore. increased wall thickness due to intimal atherosclerotic thickening correlated well with $LE_{1}$-$LE_{2}$ distance of the B-mode images. B-mode images obtained from the carotid arteries in situ in four cadavers also corresponded best with total wall thickness measured from histological sections and not with the thickness of the intima plus media. In conclusion, the $LE_{1}$-$LE_{2}$ distance measured on B-mode images of the carotid artery best represents total wall thickness of intima plus media plus adventitia and not intima plus media alone.

  • PDF

Standards for Applying Reasonable Receive Bandwidth to Suppress Metal Artifacts in MRI (MRI 검사 시 금속 인공물 억제를 위한 합리적인 수신대역폭 적용 기준)

  • Se-Jong Yoo;Min-Cheol Jeon;Nam-Yong An;Soon-Yong Kwon;Seong-Ho Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1115-1122
    • /
    • 2023
  • This study aimed to present reasonable reception bandwidth application standards for the purpose of suppressing metal objects during MRI examinations. For this purpose, T2 contrast images were acquired using high-speed spin echo technology on a phantom made of screws for spinal surgery, and metal objects were detected. In addition, images were obtained by increasing the reception bandwidth from 100 Hz/PX to 800 Hz/PX by 100 Hz/PX. The metal artifacts were determined as the sum of the areas of the signal attenuation area and the signal accumulation area. In addition, Pearson correlation analysis was performed to analyze the pattern of metal artifacts according to imaging variables. As a result, the signal accumulation area did not change significantly as the reception bandwidth increased (p>0.05), but the signal loss area and the area of metal artifacts decreased as the reception bandwidth increased (p<0.05). Interestingly, the area of metal objects decreased to a maximum in the section where the reception bandwidth was increased from 100 Hz/PX to 200 Hz/PX, consistent with the section where the echo spacing was reduced to a maximum due to the increase in reception bandwidth. In addition, the correlation analysis results also showed that the eco spacing was more related to the signal attenuation area and the area of metal objects than to the reception bandwidth. Therefore, if the reception bandwidth is increased for the purpose of reducing metal objects, it is reasonable to set it based on a value that minimizes the echo spacing in consideration of image quality factors.