• 제목/요약/키워드: Image Annotation

검색결과 114건 처리시간 0.033초

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.

인체영상 어노테이션 DB 설계에 관한 연구 (A Study on Design of Annotation Database for Visible Human)

  • 안부영;이승복;한건;이상호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.819-822
    • /
    • 2008
  • 최근 들어 정보기술과 컴퓨터 네트워크가 급속도로 발전하면서 디지털콘텐트의 보급이 증가하고 있다. 디지털 콘텐트는 멀티미디어 형태의 2, 3차원 정보로 표현되며 이 가운데 인간의 몸을 촬영하여 데이터베이스를 구축한 인체영상 데이터베이스는 다양한 분야에 활용될 수 있는 주요한 디지털 콘텐트이다. 한국과학기술정보연구원(KISTI)에서는 한국인의 인체영상, 골격형상, 인체물성, 인체모델 등 다양한 인체정보를 현재 구축 중에 있으며 이러한 정보들을 인터넷을 통해 공개하고 있다. 그러나 인체영상의 각 이미지에 관한 설명자료는 제공되고 있지 않아 의학영상 전문가가 아니면 각 이미지에 대한 세부내용을 알 수가 없다. 이에 본 논문에서는 인체영상 데이터의 정보접근 효율성을 향상시키고자 한국인의 인체영상 데이터베이스를 대상으로 하여 이미지에 관한 설명과 특이사항을 정리하여 이미지와 텍스트가 연계 가능한 어노테이션 데이터베이스 및 검색 인터페이스를 설계하였다. 이를 통해 보다 접근성이 좋은 인체영상 데이터베이스의 개발과 함께 데이터 활용이 더욱 촉진되리라 기대된다.

  • PDF

Anomaly-based Alzheimer's disease detection using entropy-based probability Positron Emission Tomography images

  • Husnu Baris Baydargil;Jangsik Park;Ibrahim Furkan Ince
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.513-525
    • /
    • 2024
  • Deep neural networks trained on labeled medical data face major challenges owing to the economic costs of data acquisition through expensive medical imaging devices, expert labor for data annotation, and large datasets to achieve optimal model performance. The heterogeneity of diseases, such as Alzheimer's disease, further complicates deep learning because the test cases may substantially differ from the training data, possibly increasing the rate of false positives. We propose a reconstruction-based self-supervised anomaly detection model to overcome these challenges. It has a dual-subnetwork encoder that enhances feature encoding augmented by skip connections to the decoder for improving the gradient flow. The novel encoder captures local and global features to improve image reconstruction. In addition, we introduce an entropy-based image conversion method. Extensive evaluations show that the proposed model outperforms benchmark models in anomaly detection and classification using an encoder. The supervised and unsupervised models show improved performances when trained with data preprocessed using the proposed image conversion method.

이미지 브라우징 처리를 위한 전형적인 의미 주석 결합 방법 (Clustering Representative Annotations for Image Browsing)

  • 주철화;왕령;이양구;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.62-65
    • /
    • 2010
  • Image annotations allow users to access a large image database with textual queries. But since the surrounding text of Web images is generally noisy. an efficient image annotation and retrieval system is highly desired. which requires effective image search techniques. Data mining techniques can be adopted to de-noise and figure out salient terms or phrases from the search results. Clustering algorithms make it possible to represent visual features of images with finite symbols. Annotationbased image search engines can obtains thousands of images for a given query; but their results also consist of visually noise. In this paper. we present a new algorithm Double-Circles that allows a user to remove noise results and characterize more precise representative annotations. We demonstrate our approach on images collected from Flickr image search. Experiments conducted on real Web images show the effectiveness and efficiency of the proposed model.

  • PDF

WordNet 기반 개념적 이미지 주석 시스템 설계 (Design of Conceptual Image Annotation System Using WordNet)

  • 조미영;최준호;김판구
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.1081-1086
    • /
    • 2002
  • 이미지검색을 위해서 객체의 시각적인 특징에 대한 저차원의 특징 정보를 추출하고 이미지에 의미를 부여하기 위하여 주석을 다는 것이 일반적이다. 하지만 주석 기반 검색에서는 주석으로 달아 놓은 단어와 정확한 매칭이 없다면 찾을 수가 없다. 이러한 문제를 해결하기 위해 재질의 질의어 확장과 같은 기법을 써서 문제를 해결해 왔으나 여전히 개념적 매칭이 아닌 스트링 매칭의 문제를 안고 있다고 볼 수 있다. 이에 본 논문에서는 이미지 관련 Text에서 단어를 추출한 후 추출된 단어들간의 개념 관계를 WordNet을 이용하여 표현한 주석 시스템을 제안한다. 이 시스템은 단순 스트링 매칭이 아닌 개념적 매칭에 의한 개념 기반 검색을 지원할 수 있다.

  • PDF

Multiple-Shot Person Re-identification by Features Learned from Third-party Image Sets

  • Zhao, Yanna;Wang, Lei;Zhao, Xu;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.775-792
    • /
    • 2015
  • Person re-identification is an important and challenging task in computer vision with numerous real world applications. Despite significant progress has been made in the past few years, person re-identification remains an unsolved problem. This paper presents a novel appearance-based approach to person re-identification. The approach exploits region covariance matrix and color histograms to capture the statistical properties and chromatic information of each object. Robustness against low resolution, viewpoint changes and pose variations is achieved by a novel signature, that is, the combination of Log Covariance Matrix feature and HSV histogram (LCMH). In order to further improve re-identification performance, third-party image sets are utilized as a common reference to sufficiently represent any image set with the same type. Distinctive and reliable features for a given image set are extracted through decision boundary between the specific set and a third-party image set supervised by max-margin criteria. This method enables the usage of an existing dataset to represent new image data without time-consuming data collection and annotation. Comparisons with state-of-the-art methods carried out on benchmark datasets demonstrate promising performance of our method.

Deep learning framework for bovine iris segmentation

  • Heemoon Yoon;Mira Park;Hayoung Lee;Jisoon An;Taehyun Lee;Sang-Hee Lee
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.167-177
    • /
    • 2024
  • Iris segmentation is an initial step for identifying the biometrics of animals when establishing a traceability system for livestock. In this study, we propose a deep learning framework for pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the BovineAAEyes80 public dataset. The proposed image segmentation framework encompasses data collection, data preparation, data augmentation selection, training of 15 deep neural network (DNN) models with varying encoder backbones and segmentation decoder DNNs, and evaluation of the models using multiple metrics and graphical segmentation results. This framework aims to provide comprehensive and in-depth information on each model's training and testing outcomes to optimize bovine iris segmentation performance. In the experiment, U-Net with a VGG16 backbone was identified as the optimal combination of encoder and decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted images without proper annotation data. This study contributes to the advancement of iris segmentation and the establishment of a reliable DNN training framework.