The usage of virtual reality (VR) in healthcare field has been gaining attention lately. The main use cases revolve around medical imaging and clinical skill training. Healthcare professionals have found great benefits in these cases when done in VR. While medical imaging on the desktop has lots of available software with various tools, VR versions are mostly stripped-down with only basic tools. One of the many tool groups significantly missing is annotation. In this paper, we survey the current situation of medical imaging software both on the desktop and in the VR environment. We will discuss general information on medical imaging and provide examples of both desktop and VR applications. We will also discuss the current status of annotation in VR, the problems that need to be overcome and possible solutions for them. The findings of this paper should help developers of future medical image annotation tools in choosing which problem they want to tackle and possible methods. The findings will be used to help in our future work of developing annotation tools.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권3호
/
pp.1071-1092
/
2014
Annotating images with tags that describe the content of the images facilitates image retrieval. However, this task is challenging for both humans and computers. In response, a new approach has been proposed that converts the manual image annotation task into CAPTCHA challenges. However, this approach has not been widely used because of its weak security and the fact that it can be applied only to annotate for a specific type of attribute clearly separated into mutually exclusive categories (e.g., gender). In this paper, we propose a novel image annotation CAPTCHA scheme, which can successfully differentiate between humans and computers, annotate image content difficult to separate into mutually exclusive categories, and generate verified test images difficult for computers to identify but easy for humans. To test its feasibility, we applied our scheme to annotate images of human faces with their age groups and conducted user studies. The results showed that our proposed system, called AgeCAPTCHA, annotated images of human faces with high reliability, yet the process was completed by the subjects quickly and accurately enough for practical use. As a result, we have not only verified the effectiveness of our scheme but also increased the applicability of image annotation CAPTCHAs.
Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.
본 논문은 의료 영상 중 X-ray 영상에 대한 효과적인 분류와 자동 주석 생성을 위한 방법을 제안한다. X-ray 영상은 일반 자연 영상과는 다르게 영상 내에 중요한 의미를 가지고 있는 관심 영역과 어두운 단색의 배경으로 구성된 특징을 가지고 있음으로 본 논문에서는, 영상의 중요영역에서 해리스 코너 검출기를 이용한 색 구조 기술자(H-CSD)로 색 특징을 추출하고, 질감 특징을 위해 경계선 히스토그램 기술자(EHD)를 사용하였다. 추출된 두 개의 특징 벡터들은 각각 다중 클래스 Support Vector Machine에 적용되어 20개의 카테고리 중 하나로 영상을 분류한다. 마지막으로, 영상은 미리 정의된 카테고리들의 계층적인 관계와 우선 순위에 기반하여 주석 코드 배열(Annotation Code Array)을 부여 받고 이를 이용하여 다수의 최적 키워드를 얻으며 갖게 된다. 실험에서는 제안한 주석 생성방법을 관련 연구 방법과 비교하여 성능이 개선 되었음을 보여주고 있다.
In this paper, I propose an automatic approach to annotating images dynamically based on MBRM(Multiple Bernoulli Relevance Models) using GLCM(Grey Level Co-occurrence Matrix). MBRM is more appropriate to annotate images compare with multinomial distribution. The model is used in limited test set, MSRC-v2 (Microsoft Research Cambridge Image Database). The results show that this model is significantly outperforms previously reported results on the task of image annotation and retrieval.
This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권10호
/
pp.2650-2662
/
2012
Due to the semantic gap issue, the performance of automatic image annotation is still far from satisfactory. Active learning approaches provide a possible solution to cope with this problem by selecting most effective samples to ask users to label for training. One of the key research points in active learning is how to select the most effective samples. In this paper, we propose a novel active learning approach based on sparse graph. Comparing with the existing active learning approaches, the proposed method selects the samples based on two criteria: uncertainty and representativeness. The representativeness indicates the contribution of a sample's label propagating to the other samples, while the existing approaches did not take the representativeness into consideration. Extensive experiments show that bringing the representativeness criterion into the sample selection process can significantly improve the active learning effectiveness.
인터넷의 빠른 발전으로 현재 HTML 웹 페이지에 내장된 영상들은 눈에 띄게 두드러졌다. 내용을 묘사하고 주의를 끄는 놀랄만한 함수 때문에 영상들은 웹 페이지에서 사실상 중요하게 되었다. 모든 영상들은 가공할 만한 데이터베이스로 구성되어있다. 게다가. 영상들의 의미론적인 의미도 주변의 텍스트나 링크에 의해 잘 표현된다. 하지만 이들 영상의 소수들이 주요 구에 정확히 할당되고 주요 구들을 현재의 영상에 수작업으로 할당하는 것은 매우 어렵다. 따라서 주요 구들을 추출하는 절차의 자동화는 매우 바람직하다. 본 논문에서는 먼저 저수준 특징, 페이지 태그, 전체적인 단어 빈도수와 지역적 단어 빈도수를 기반으로 한 WWW 영상 주석 방법을 소개한다. 그리고 멀티-큐 통합영상 주석 방법을 전개해 나간다. 또한 실험을 통하여 멀티-큐 영상 주석 방법이 다른 방법보다 우수함을 보여준다.
In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.
Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.