• Title/Summary/Keyword: Ilyonectria radicicola

Search Result 5, Processing Time 0.017 seconds

Pathgenicity on Ginseng and Sequence Assays of Ilyonectria radicicola Isolated from Chestnut Rhizosphere Soils (밤나무 근권토양에서 분리한 Ilyonectria radicicola 균주의 인삼에 대한 병원성 및 유전적 분석)

  • Seo, Mun Won;Song, Jeong Young;Kim, Sun Ick;Oh, Sang Keun;Kim, Hong Gi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.302-307
    • /
    • 2018
  • Background: A soil-borne pathogenic fungus, Ilyonectria radicicola (Cylindrocarpon destructans) causes root rot on ginseng (Panax ginseng C. A. Meyer) and is known to attack many other plants. The Nectria/Neonectria radicicola complex has been renamed as the I. radicicola complex after analysis of its multi-gene relatedness and morphological characteristics. The fungi in this complex have been reclassified into 16 species under the genus Ilyonectria based on characteristics analysis Methods and Results: To obtain useful data from the Korean ginseng root rot, I. radicicola was isolated from the rhizosphere soils of the chestnut tree. They were identified through a pathogenicity test and a survey of the morphological features. The existence of I. radicicola in soil samples was confirmed by PCR detections using nested PCR with species-specific primer sets. These were subsequenctly isolated on semi-selective media from PCR-positive soils. Genetic analysis of the I. radicicola complex containing these pathogens was done by comparing the DNA sequences of the histone h3 region. These isolates originating from the rhizosphere soils of chestnut constituted a clade with other closely related species or I. radicicola isolates originating from ginseng or other host plants, respectively. Additionally, the pathogenicity tests to analyze the characteristics of these I. radicicola isolates revealed that they caused weakly virulent root rot on ginseng. Conclusions: This is the first study reporting that I. radicicola isolates from chestnut rhizosphere soils can attack ginseng plant in Korea. Thus, these results are expected to provide informations in the selection of suitable fields for ginseng cultivation.

Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms

  • Farh, Mohamed El-Agamy;Kim, Yeon-Ju;Kim, Yu-Jin;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Cylindrocarpon destructans/Ilyonectria radicicola is thought to cause both rusty symptom and root-rot disease of American and Korean ginseng. Root-rot disease poses a more serious threat to ginseng roots than rusty symptoms, which we argue result from the plant defense response to pathogen attack. Therefore, strains causing rotten root are characterized as more aggressive than strains causing rusty symptoms. In this review, we state 1- the molecular evidence indicating that the root-rot causing strains are genetically distinct considering them as a separate species of Ilyonectria, namely I. mors-panacis and 2- the physiological and biochemical differences between the weakly and highly aggressive species as well as those between rusty and rotten ginseng plants. Eventually, we postulated that rusty symptom occurs on ginseng roots due to incompatible interactions with the weakly aggressive species of Ilyonectria, by the established iron-phenolic compound complexes while root-rot is developed by I. morspanacis infection due to the production of high quantities of hydrolytic and oxidative fungal enzymes which destroy the plant defensive barriers, in parallel with the pathogen growth stimulation by utilizing the available iron. Furthermore, we highlight future areas for study that will help elucidate the complete mechanism of root-rot disease development.

Virulence Assays and Genetic Reclassification to Assess the Pathogenicity of Cylindrocarpon destructans Isolated from Peony in Ginseng (작약에서 분리한 Cylindrocarpon destructans의 인삼에 대한 병원성 검정 및 분류학적 고찰)

  • Seo, Mun Won;Song, Jeong Young;Kang, Kwang Hoon;Park, Soo Yeon;Kim, Sun Ick;Kim, Hong Gi
    • The Korean Journal of Mycology
    • /
    • v.45 no.2
    • /
    • pp.132-138
    • /
    • 2017
  • To obtain useful data on root rot in Korean ginseng, we performed phylogenetic analysis and pathogenicity test for Cylindrocarpon destructans isolated from peony. Cylindrocarpon destructans isolates from peony were proven to cause ginseng root rot. The isolate KACC44663 was identified as Ilyonectria robusta under the new classification system, which belongs to the I. radicicola species complex. This is the first report of the pathogenic isolate, which was isolated from another host plant, but not ginseng, that can cause root rot disease on ginseng in Korea.

The Disease Severity and Related Pathogens Caused by Root Rot on 6 Years Old Ginseng Cultivation Fields (인삼 6 년근 수확지의 뿌리썩음병 발생현황 및 관련 병원균 동정)

  • Seo, Mun Won;Han, You Kyoung;Bae, Yeoung Seuk;Lee, Seung Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.144-152
    • /
    • 2019
  • Ginseng (Pnanx ginseng C. A. Meyer) is famous worldwide, and is very important cash crop and medicinal herb in Korea. It takes four to five years to produce harvestable ginseng roots, and ginseng is attacked by several pathogens during cultivation. We investigated the disease rate caused by ginseng root rot from 6 years old ginseng cultivation fields (Chungnam; 9 fields, Chungbuk; 11 fields, Gangwon 5 fields). The highest disease severity was Dangjin D (2.9) and the lowest one was Gaesan C (0.6). Of the 625 isolations, 340 isolations were classified as Ilyonectria radicicola and Fusarium solani. Finally, genetic diversity of I. radicicola and F. solani was confirmed by sequence analysis. Among the I. radicicola group, I. mors-panacis, which is known as highly virulent pathogen, and I. liriodendri, I. robusta and I. cyclamicicola, which are weakly virulent pathogens, were identified. In the case of F. solani, it is divided into two groups, but it is necessary to conduct diversity research through genetic analysis and pathogenetic studies using various markers. Based on these results, it could be used as a basic data for control of ginseng root rot pathogens.

Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

  • Farh, Mohamed El-Agamy;Han, Jeong A.;Kim, Yeon-Ju;Kim, Jae Chun;Singh, Priyanka;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples ($R^2=0.95$), disease severity index ($R^2=0.99$), and colony-forming units ($R^2=0.87$). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of $5.82{\pm}2.35pg/g$ to $892.34{\pm}103.70pg/g$ of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.