• 제목/요약/키워드: Illumination normalization

검색결과 46건 처리시간 0.03초

조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화 (Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace)

  • 설태인;정선태;기선호;조성원
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.179-184
    • /
    • 2009
  • 다양한 조명 환경에서 강인한 얼굴 인식은 어렵다. 조명에 강인한 얼굴 인식을 위해서 보통 얼굴 이미지 조명 정규화 전처리를 수행한다. 기존 조명 전처리 기법 중에 가장 효율적으로 알려진 비등방성 스무딩 기법에 의한 조명 정규화는 투영음영(casting shadow)은 제거할 수 없다. 본 논문에서는 고유얼굴로 부터 조명 영향 부분을 분리하여 조명이 분리된 고유얼굴 공간을 구하고, 얼굴 이미지를 이 부분공간으로 투영하여 투영음영을 포함한 조명 영향을 최소한 얼굴 이미지 조명 정규화 기법을 제안한다. 본 논문에서 제안한 기법의 효율성은 적용을 통해 확인되었다.

  • PDF

조명영향 분리 얼굴 고유특성 텍스쳐 부분공간 기반 얼굴 이미지 조명 정규화 (Face Illumination Normalization based on Illumination-Separated Face Identity Texture Subspace)

  • 최종근;정선태;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.25-34
    • /
    • 2010
  • 다양한 조명 환경에서 강인한 얼굴 인식 성취는 어렵다. 조명에 강인한 얼굴 인식을 위해서 보통 전처리 단계로 얼굴 이미지 조명 정규화를 수행한다. 기존 조명 전처리 기법들은 투영 음영을 효과적으로 처리할 수 없다. 본 논문에서는 조명 영향 분리 얼굴 고유특성 텍스쳐 부분공간에 기반한 새로운 얼굴 조명 정규화 기법을 제안한다. 조명분리 얼굴 고유특성 텍스쳐 부분 공간은 얼굴 텍스쳐 공간에서 조명 변화 영향이 분리된 부분공간으로 구축되기 때문에 얼굴 이미지를 이 부분공간으로 투영하여 얻은 얼굴 이미지는 조명 변화 영향이 최소화된 좋은 조명 정규화를 달성한다. 실험을 통해 본 논문에서 제안한 얼굴 조명정규화 기법이 표면 음영뿐만 아니라 투영 음영도 효과적으로 제거할 수 있으며, 좋은 얼굴 조명 정규화를 달성한다는 것을 확인하였다.

블록 기반 밝기 표준화를 통한 이진영상의 고속 불균일 조명 보정 (Fast Correction of Nonuniform Illumination on Bi-level Images using Block Based Intensity Normalization)

  • 정지혜;김정태
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1926-1931
    • /
    • 2012
  • We investigated a novel fast non-uniform illumination correction method for bi-level images. The proposed method divides a bi-level image into sub-images and roughly estimates block-wise illumination by low pass filtered maximum values of sub-images. After that, we apply bilinear interpolation using the block-wise illumination to estimate non-uniform illumination, and compensate for the effect of non-uniform illumination using the estimated illumination. Since the proposed method is not based on computation intensive iterative optimization, the proposed method can be used effectively for applications that require fast correction of non-uniform illumination. In simulations, the proposed method showed more than 20 times faster speed than existing entropy minimization method. Moreover, in simulations and experiments, the restored images by the proposed method were more close to true images than images restored by conventional method.

얼굴 인식을 위한 Anisotropic Smoothing 기반 효율적 조명 전처리 (An Efficient Illumination Preprocessing Algorithm based on Anisotropic Smoothing for Face Recognition)

  • 김상훈;정수환;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.236-245
    • /
    • 2008
  • 다양한 조명 환경 하에서, 얼굴인식이 잘 동작하도록 하는 것은 매우 어려운 일이며 성공적인 상업화를 위해서는 반드시 성취되어야 하는 작업이다. 본 논문에서는 얼굴 인식을 위한 효율적인 조명 전처리 방법을 제안한다. Anisotropic smoothing 기반 조명 전처리 방법은 조명 전처리 방법 가운데 효과적인 방법으로 잘 알려져 있으나, 원 이미지의 명도 대비를 감소시키며 에지 성분의 약화를 초래한다. 본 논문의 제안 방법은 기존 anisotropic smoothing 방법을 개선하여, 조명의 영향을 줄이면서 명도 대비를 증가시키고 에지 정보를 강화한다. 이러한 개선의 결과로, 본 논문의 제안 방법에 의해 조명 전처리된 같은 사람의 얼굴 이미지들은 보다 차별적인 특징 벡터(가버 특징 벡터)를 갖게 된다. 본 논문에서 제안한 조명 전처리 방법의 효율성은 가버젯 유사도를 이용한 얼굴 인식의 실험을 통하여 입증되었다.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권1호
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

조명변화에 강인한 눈 검출을 위한 조명 정규화 방법 (Illumination Normalization Method for Robust Eye Detection in Lighting Changing Environment)

  • 허성철;이흐테샴울이슬람;김인택
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.955-956
    • /
    • 2008
  • This paper presents a new method for illumination normalization in eye detection. Based on the retinex image formation model, we employ the discrete wavelet transform to remove the lighting effect in face image data. The final result based on the proposed method shows the better performance in detecting eyes compared with previous work.

  • PDF

조명 환경에 강인한 얼굴인식 성능향상을 위한 Bilateral 필터 기반 조명 정규화 방법에 관한 연구 (A Study on Illumination Normalization Method based on Bilateral Filter for Illumination Invariant Face Recognition)

  • 이상섭;이수영;김중규
    • 대한전자공학회논문지SP
    • /
    • 제47권4호
    • /
    • pp.49-55
    • /
    • 2010
  • 조명 환경에 의해 발생하는 강한 그림자 영역은 반사 영상을 이용하는 얼굴인식시스템의 성능을 저하시키는 주요인으로써, 인식률을 향상시키기 위해서는 강한 그림자 영역과 얼굴의 특징 영역을 구분해 낼 필요가 있다. 한편 Bilateral 필터는 영상 화소 값의 비선형적인 조합을 사용하여 경계영역을 보존하면서도, 전체 영상을 평활화할 수 있는 특성을 갖는다. 따라서 Bilateral 필터의 특성은 레티넥스 기반 조명 정규화 방법에서의 조명을 추정하는 과정에 사용되는 평활화 필터에 적합하다. 이에 본 논문에서는 강한 그림자 영역을 효과적으로 제거하기 위한 Bilateral 필터 기반의 새로운 조명 정규화 방법을 제안한다. Bilateral 필터의 계수는 화소 간 근접성(proximity)과 불연속성(discontinuity)의 곱으로 설계하여, 추정된 조명 영상에서 강한 그림자 영역이 비교적 정확하게 보존되도록 한다. 제안된 방법의 성능은 PCA(Principle Component Analysis)를 이용하여 인식률을 측정하고, 두 가지 데이터베이스에 대해 기존의 조명 정규화 방법들과 비교하여 평가하였다.

운전자 졸음 인식 시스템 구현 (Implementation of Driver Fatigue Monitoring System)

  • 최진모;송혁;박상현;이철동
    • 한국통신학회논문지
    • /
    • 제37권8C호
    • /
    • pp.711-720
    • /
    • 2012
  • 본 논문에서는 운전자 졸음 인식 시스템의 구현 방법과 그에 따른 결과를 소개한다. 영상 입력 장치로는 시중에 판매되는 웹캠 카메라를 사용하였다. 얼굴 검출 방법으로는 Haar 변환 기법을 이용하였으며, 다양한 조명 환경에 강건하게 적응하도록 조명정규화를 수행하였다. 조명정규화를 거친 얼굴 영상은 특징값 추출에 용이하다. 조명정규화를 통한 눈 후보영역은 인체측정학 정보를 이용하여 후보 영역을 줄인 이후에 PCA와 Circle Mask의 혼합 모델을 적용했다. 위 방법을 통해 차량 내부의 복잡한 조명 환경 속에서 강건히 눈 영역을 추출한다. 검출된 눈 영역은 고해상도의 조명 정규화 영상과 간단한 연산을 통하여 졸음 여부를 판별한다. 졸음 상태가 1단계로 판단 될 경우에는 통합 모니터링 인터페이스에서 운전자에게 경고음을 울리며 2단계일 경우에는 CAN(Controller Area Network)를 통하여 안전벨트를 진동하게 함으로써 운전자에게 경고를 준다. 본 논문에서 제안하는 졸음 인식 시스템은 낮은 계산 복잡도를 만족하는 동시에 높은 인식률을 보여준다. 실험 결과 차량 내에서 97%의 인식률이 나타났다.

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.