본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.
This study was carried out to evaluate the harmful factors in working environments and to investigate the labor productivity after improvement of environments, surveying 93 industrial establishments of 10 industries located in Youngdeungpo industrial area in Seoul. The results obtained were as follows: 1) The highest noise level of 125dB(A) was indicated at the rolling process of transport equipment manufacturing industry. 2) The best illumination level was shown in precise machinery industry and the worst was indicated in rubber products, metallic products and transport equipment manufacturing industries. 3) Thermal conditions were above threshold limit value (TLV) at more than two processes of all industries except printing industry. 4) The highest dust concentration was determined in textile and wearing manufacturing industry. 5) Organic solvents were detected at 52 processes in 93 industrial establishments and 33 processes of them showed higher than TLV. The results about harmful chemicals were as follows: a) sulfur dioxide ($SO_2$)was determined higher than TLV on welding process of metallic product manufacturing industry and heat treatment process of transport equipment manufacturing industry. b) Carbon monoxide (CO) concentration was 700ppm at heat treatment process of transport equipment manufacturing industry, indicating 14 times of TLV. c) vinylchloride concentration in the air of PVC raw material mixing process and PVC preparation process of chemical product manufacturing industry was determined higher than TLV. d) Hydrochloride (HCl) concentration in the air of wire expanding process of transport equipment manufacturing industry was determined higher than TLV. 7) Higher values of lead concentration than TLV were determined at lead welding metallic product manufacturing industry and type planting process of process of printing industry, $1.8mg/m^3$ and $0.3mg/m^3$ respectively. 9) 22, 968 of 52, 855 workers (i.e. 43.5%) in 93 industries were exposed to various harmful agents. 10) It was found that the improvement of illumination in electric apparatus manufacturing industry (from 20~40 lux to 420 lux) resulted in an increase in productivity of 6.5% per capita and a decrease in faulty products of 19%. 11) Improvement of environments using local exhaust ventilation system resulted in a decrease of harmful substances lower than TLV and an increase in productivity of 11.4%. 12) Improvement of shovelling tools based on ergonomics resulted in a reduction in energy expenditure of 25.3% and an increase in productivity of 32.2% per capita.
본 논문에서는 YCbCr 색공간을 이용한 피부색 추출에서 조명과 그림자에 의한 손실 영역을 Flood Fill 알고리즘을 이용하여 보완하고 Haar-like 특징을 이용한 Cascade Classifier 얼굴 검출 방법을 제안하였다. Haar-like 특징을 이용한 Cascade Classifier는 이미지에서 기존의 YCbCr 색공간을 이용한 피부색 추출은 단순히 임계값만 사용하기 때문에 조명, 그림자 등에 의해 잡음과 손실 영역이 발생할 수 있다. 이러한 문제를 해결하기 위해 침식, 팽창 연산을 사용하여 잡음을 제거하였고 손실 영역을 추정하기 위해 Flood Fill 알고리즘을 사용하여 손실 영역을 추정하였다. 추정한 영역에 대하여 YCbCr 색공간의 임계값을 추가로 허용하였다. 나머지 손실영역에 대하여 위에서 추정한 영역중 추가로 허용한 영역의 평균값으로 색을 채워 넣었다. 추출한 이미지에 Haar-like Cascade Classifier를 사용하여 얼굴을 검출하였다. 기존의 Haar-like Cascade Classifier의 방법보다 제안하는 방법이 정확도가 약 4% 향상되었으며 YCbCr 색공간만을 이용한 피부색 추출보다 제안하는 방법의 검출률이 약 2% 향상되었다.
일반적인 장면전환 검출방법은 연속적인 두 영상의 특징 값을 비교하여 일정한 임계값 이상일 경우 장면전환으로 판단한다. 그러나 기존의 장면전환을 검출하는 알고리즘은 장면전환을 검출하는데 있어서 프레임의 특징 값을 추출하기 위하여 복호화 과정에서 많은 시간이 소비되었고 단지 연속적인 두 영상의 특징 값을 비교하기 때문에 빛의 변화나 물체의 움직임에 따른 오검출 문제를 나타내었다. 본 논문에서는 MPEG 압축 영역에서 매크로블록 정보를 직접 추출 및 이용하여 효과적인 장면 전환 검출을 위한 알고리즘을 제안한다 제안한 알고리즘은 MPEG에서 매크로블록 정보를 직접 추출하고 이용하므로 기존의 알고리즘의 문제점인 많은 연산량 문제를 개선하였고, 연속된 프레임과의 비교를 통한 장면전환 검출이 아닌 이전 또는 이후 영상과의 연관성을 분석하여 장면전환된 프레임을 검출함으로 빛의 변화나 물체의 움직임과 같은 오검출 문제를 해결할 수 있는 알고리즘을 제안한다 제안한 알고리즘은 MPEG 데이터를 대상으로 한 실험을 통해 기존의 히스토그램을 이용한 알고리즘보다 빠르고 정확하게 검출할 수 있음을 보이고, 실험 결과를 통해 성능을 분석하였다.
현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.
Red ginsengs are inspected manually by examining those in the dark room with back light illumination. Manual inspection is often influenced by physical condition of inspectors. Sometimes. the best grade, heaven. has some inner holes though it was inspected by a specialist. In order to resolve this problem, this study was performed to develop image processing algorithm to detect the inner holes in the x-ray image of ginseng. Because of little gray value difference between background and ginseng in the image. simple thresholding method was not appropriate. Modified watershed algorithm was used to differentiate the inner holes from background and normal ginseng body. Inner hole edge region detected by watershed algorithm consists of many number of blobs including normal portions. With line profile analysis with scanning one line at a time beginning the starting point. it shelved two peaks both ends representing extracting each blobs. in which setting threshold value as of lower peak value enabled us to obtain inner hole image. Once this procedure has to be done till the finishing point it is completing inner hole detection for one blob. Thus. conducting ail blobs by this procedure is completing inner detection of one whole ginseng. Detection results of the inner holes fer various size of red ginsengs were good even though there was small detection variation. 6.2%. according to position of x-rat tube.
차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.
참딱부리긴노린재의 생물학적 특성을 조사하기 위하여, 온도 $20{\pm}1$, $25{\pm}1$, $30{\pm}1$, $35{\pm}1$, $37.5{\pm}1$, $40{\pm}1^{\circ}C$, 습도 $80{\pm}10%$, 광주기 16:8(L:D)에서 발육실험을 실시하였다. 그 결과 알부터 성충우화까지의 발육영점온도는 $14.8^{\circ}C$, 유효적산온도는 399.1일도였다. $35^{\circ}C$에서 조사한 결과를 정리하면 다음과 같다. 알 기간은 5.6일, 부화율은 81.1%, 약충 기간은 14.3일(1령 3.2, 2령 2.2, 3령 2.7, 4령 2.7, 5령 3.6일)이었다. 암컷 성충의 수명은 33.8일, 산란기간은 29.2일이었다. 총 산란수는 111.2개, 하루 최대산란수는 14.8개(7일차)였다. 알과 약충은 $37.5^{\circ}C$까지만 발육하고 $40^{\circ}C$에서는 발육하지 못했으며, $40^{\circ}C$에서 총 산란수는 22.1개였다. 참딱부리긴노린재 1령, 3령, 5령, 성충의 담배가루이 번데기 하루 포식량은 각각 1.9, 7,3, 18.7, 29.5마리였다.
얼굴인식(face recognition)은 스마트 감시 시스템, 공항 출입국관리, 스마트 기기의 사용자 인증 등 매우 다양한 용도로 활용되고 있다. 얼굴인식은 패턴인식(pattern recognition), 컴퓨터 비전(computer vision) 등에서 연구가 활발하게 진행되고 있으며 높은 인식 성능을 달성하였다. 하지만 입력된 얼굴영상의 특성(예 : 비 정면 얼굴)에 따라 동일한 얼굴인식 시스템의 성능이 크게 저하될 수 있는 문제점을 가지고 있다. 이러한 문제점을 극복하기 위해, 본 논문에서는 얼굴인식 시스템에 입력된 얼굴영상에 대하여 얼굴인식 측면에서의 사용 적합 여부를 판정하는 방법을 제안한다. 제안하는 방법은, 사전에 기준으로 정한 적합 얼굴영상들의 최적 조합으로 입력 얼굴영상을 복원하고, 복원 에러를 문턱값과 비교하여 사용 적합 여부를 결정한다. 얼굴영상에 포함된 조명변화가 사용 적합 여부를 판정하는데 미치는 영향을 감소시키기 위해, 기준 적합 얼굴영상들과 입력 얼굴영상들에 조명 보상을 위한 전처리(preprocessing) 과정을 수행한다. 실험결과, 제안하는 방법은 얼굴이 비 정면(non-frontal)인 경우나 얼굴정렬(face alignment)이 부정확한 경우 입력 얼굴영상을 얼굴인식에 부적합으로 판정할 수 있는 것으로 확인되었다. $64{\times}64$ 픽셀 크기의 얼굴영상 한 장을 판정하는데 불과 3ms의 처리시간을 가지므로 적합으로 판정된 입력 얼굴영상에 대해서만 얼굴인식을 수행함으로써 계산시간을 절약하고, 얼굴영상 특성에 따라 인식 성능이 급격히 저하되는 문제를 극복할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.