• Title/Summary/Keyword: Illumination Model

Search Result 349, Processing Time 0.026 seconds

Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background (연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘)

  • Jung, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • Detection of moving objects is a fundamental task in most of the computer vision applications, such as video surveillance, activity recognition and human motion analysis. This is a difficult task due to many challenges in realistic scenarios which include irregular motion in background, illumination changes, objects cast shadows, changes in scene geometry and noise, etc. In this paper, we propose an foreground extraction algorithm based on codebook, a database of information about background pixel obtained from input image sequence. Initially, we suppose a first frame as a background image and calculate difference between next input image and it to detect moving objects. The resulting difference image may contain noises as well as pure moving objects. Second, we investigate a codebook with color and brightness of a foreground pixel in the difference image. If it is matched, it is decided as a fault detected pixel and deleted from foreground. Finally, a background image is updated to process next input frame iteratively. Some pixels are estimated by input image if they are detected as background pixels. The others are duplicated from the previous background image. We apply out algorithm to PETS2009 data and compare the results with those of GMM and standard codebook algorithms.

Facial Image Analysis Algorithm for Emotion Recognition (감정 인식을 위한 얼굴 영상 분석 알고리즘)

  • Joo, Y.H.;Jeong, K.H.;Kim, M.H.;Park, J.B.;Lee, J.;Cho, Y.J.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.801-806
    • /
    • 2004
  • Although the technology for emotion recognition is important one which demanded in various fields, it still remains as the unsolved problem. Especially, it needs to develop the algorithm based on human facial image. In this paper, we propose the facial image analysis algorithm for emotion recognition. The proposed algorithm is composed as the facial image extraction algorithm and the facial component extraction algorithm. In order to have robust performance under various illumination conditions, the fuzzy color filter is proposed in facial image extraction algorithm. In facial component extraction algorithm, the virtual face model is used to give information for high accuracy analysis. Finally, the simulations are given in order to check and evaluate the performance.

Development of Fire Detection Algorithm using Intelligent context-aware sensor (상황인지 센서를 활용한 지능형 화재감지 알고리즘 설계 및 구현)

  • Kim, Hyeng-jun;Shin, Gyu-young;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.93-96
    • /
    • 2015
  • In this paper, we introduce a fire detection system using context-aware sensor. In existing weather and based on vision sensor of fire detection system case, acquired image through sensor of camera is extracting features about fire range as processing to convert HSI(Hue, Saturation, Intensity) model HSI which is color space can have durability in illumination changes. However, in this case, until a fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. Additionally, the fire detection in complex situations as well as difficult to separate continuous boundary is set for the required area is difficult. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire it. In addition, it is possible to differential management to intensive fire detection is required zone dividing the state of fire.

  • PDF

Study on Simulation Design of Light Emitting Diode Luminaires for 100 W Safety Street Lighting

  • Shin, Ik-Tae;Lee, Se-Il;Yang, Jong-Kyoung;Park, Dae-Hee;Lee, Dong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2010
  • Optical analysis is necessary to optimize light emitting diode (LED) safety street lighting. In this study, optical analysis was conducted for 100 W LED safety street lighting. Experimental research on such a single LED was the first undertaken. Simulation modeling based on the optical properties of the single LED has compared between average road illuminances and has them analyzed with Korean Industrial Standards for LED safety street lighting (KS C7658:2009). The simulation results demonstrated that the illumination performance (average road illuminance) was 75.3 lx at a height of 4 m and an area of $32\;m^2$, 45.25 lx at a height of 5 m and an area of $72\;m^2$, and 30.05 lx at a height of 6 m and an area of $128\;m^2$. 100 W safety street lighting (model CE180-ST-OS) designed by simulation was also compared between product and 100 W simulation modeling, and error rates averaged 5.6%. The 100 W LED safety street lighting base designed in simulation modeling was proven by comparison experiments. Through the simulations and the corresponding analysis, it was found that the tested 100 W LED safety street lamp had reasonable performance. The design method for LED safety street lamps has been summarized based on the optical analysis.

Walking assistance system using texture for visually impaired person (질감 특징을 이용한 시각장애인용 보행유도 시스템)

  • Weon, Sun-Hee;Choi, Hyun-Gil;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we propose an region segmentation and texture based feature extraction method which split the pavement and roadway from the camera which equipped to the visually impaired person during a walk. We perform the hough transformation method for detect the boundary between pavement and roadway, and devide the segmented region into 3-level according to perspective. Next step, split into pavement and roadway according to the extracted texture feature of segmented regions. Our walking assistance system use rotation-invariant LBP and GLCM texture features for compare the characteristic of pavement block with various pattern and uniformity roadway. Our proposed method show that can segment two regions with illumination invariant in day and night image, and split there regions rotation and occlution invariant in complexed outdoor image.

Implementation of Indoor Navigation System using VLC based-Smart Devices (VLC 기반의 스마트 기기를 이용한 실내 내비게이션 시스템 구현)

  • Lee, Young-Doo;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Recently, Light Emitting Diode(LED) light is changing the light equipment, which was considered just as a power-controlled device in home-network, into a IT convergence device by combining illumination function with wireless communication. As a result, Visible Light Communication(VLC) becomes a more practical solution to ubiquitous networks due to the more spread of LED light. One of representative applications using VLC is a VLC-based indoor navigation system which can provide high-accuracy indoor localization. In this paper, we model and implement a VLC based-indoor navigation system in which a fluorescent light type of LED lamp, which is normally used in large buildings, and smart devices, which are usually used by users, are utilized as main components for indoor navigation. Subsequently, it is expected that the paper can contribute to make VLC applications be more active.

Optical Sensitivity of TL Glow Peaks Separated Using Computerized Glow Curve Deconvolution for RTL Quartz

  • Kim, Myung-Jin;Kim, Ki-Bum;Hong, Duk-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.114-119
    • /
    • 2018
  • Background: The retrospective dosimetry using RTL quartz can be improved by information for an optical sensitivity of sample connected with the equivalent dose determination. Materials and Methods: The quartz sample from a volcanic rock of Japan was used. After correcting the thermal quenching effect, RTL peaks of quartz were separated by the CGCD method cooperated with the general order kinetics. The number of overlapped glow peaks were ascertained by the $T_m-T_{stop}$ method. The optical sensitivity was examined by comparing the change of intensity on RTL glow peaks measured after exposure to light from a solar simulator with various illumination times. Results and Discussion: Seven glow peaks appeared to be overlapped on the RTL glow curve. The general order kinetics model was appropriate to separate glow peaks. After exposure to light from a solar simulator from a few minutes to 416 hr, the signals for peaks P4 and P5 decayed following the form of $f(t)=a_1e^{-{\lambda}1t}$, while the signals for peaks P6 and P7 decayed by the form of $f(t) = a_1e^{-{\lambda}1t}+a_2e^{-{\lambda}2t}+a_3e^{-{\lambda}3t}$. Conclusion: For dosimetric peaks, the times taken to reduce the RTL signal to half of its initial value were 70 sec for the peak P4, 54 s for the peak P5, 9,840 sec for the peak P6 and 26,580 sec for the peak P7, respectively. We conclude that the optical sensitivity of peaks P4, and P5 gives much higher than that of peaks P6 and P7.

Depth Measurement of Materials Attached to Cylinder Using Line Laser (라인 레이저를 이용한 원통 부착물의 심도 측정)

  • Kim, Yongha;Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Line-laser beams are used for accurate measurement of 3D shape, which is robust to external illumination. For depth measurement, we project a line-laser beam across an object from the face and take an image of the beam on the object surface using a CCD camera at some angle with respect to the face. For shape measurement, we project parallel line-laser beams with narrow line to line distance. When a layer of thin materials attached to a cylinder is long narrow along its circumference, we can measure the shape of the layer with a small number of parallel line beams if we project line beams along the circumference of the cylinder. Measurement of the depth of the attached materials on a line-laser beam is based on the number of pixels between an imaginary line along the imaginary cylinder without the attached materials and the beam line along the materials attached to the cylinder. For this we need to localize the imaginary line in the captured image. In this paper, we model the shape of the line as an ellipse and localize the line with least square estimate. The proposed method results in smaller error (maximum 0.24mm) than a popular 3D depth camera (maximum 1mm).

Shore-to-sea Maritime Visible Light Communication using Color Clustered MIMO (컬러 클러스터 MIMO 기술을 적용한 해상 가시광 통신 시스템)

  • Kim, Hyeong-ji;Chung, Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1773-1779
    • /
    • 2015
  • Shore-to-sea visible light communication using color clustered multiple-input and multiple-output (MIMO) is presented. The proposed maritime visible light communication (MVLC) offers a low-cost, high-speed wireless link for shore-to-sea maritime communications. Each color cluster is comprised of 50 red, green and blue (RGB) light emitting diodes (LEDs) and is modulated using on-off-keying (OOK). Selection combining is performed at the receiver, producing diversity effect within that color cluster. In this paper, we employ sea states (wave height, wind speed, etc.) data from both Pierson-Moskowitz and JONSWAP spectrum models under atmospheric turbulence conditions. Based on the simulation model, the maritime link quality is analysed in terms of coverage distance and bit error rate performance. The results show that the proposed system provides an efficient MVLC, while satisfying International Association of Lighthouse Authorities (IALA) requirements for maritime buoyage system and also offering sufficient illumination from high power LEDs.

Face Relighting Based on Virtual Irradiance Sphere and Reflection Coefficients (가상 복사조도 반구와 반사계수에 근거한 얼굴 재조명)

  • Han, Hee-Chul;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.339-349
    • /
    • 2008
  • We present a novel method to estimate the light source direction and relight a face texture image of a single 3D model under arbitrary unknown illumination conditions. We create a virtual irradiance sphere to detect the light source direction from a given illuminated texture image using both normal vector mapping and weighted bilinear interpolation. We then induce a relighting equation with estimated ambient and diffuse coefficients. We provide the result of a series of experiments on light source estimation, relighting and face recognition to show the efficiency and accuracy of the proposed method in restoring the shading and shadows areas of a face texture image. Our approach for face relighting can be used for not only illuminant invariant face recognition applications but also reducing visual load and Improving visual performance in tasks using 3D displays.