• Title/Summary/Keyword: IkB kinase

Search Result 28, Processing Time 0.022 seconds

The Study of $NF-{\kappa}B(P50)$ Suppression mechanism with main Component of Bee Venom and Melittin on Human Synoviocyte

  • Kwon, Soon-Jung;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2005
  • Melittin,cationic 26-amino acid, is the principal component of the bee venom (BV) which has been used for treatment of inflammatory disease such as arthritis rheumatism NF-kB is activated by subsequent release of inhibitory IkB via activation of a multisubunit IkB kinase (IKK). We previously found that melittin bind to the sulfhydryl group of p50, a subunit of NF-kB. Since sulfhydryl group is present in kinase domain of IKKa and IKKb, melittin could modify IKK activity by protein-protein interaction. We therefore examined effect of melittin on IKK activities in sodium nitroprusside (SNP)-stimulated synoviocyte obtained from RA patients. Melittin suppressed the SNP-induced release of IkB resulted in inhibition of DNA binding activity of NF-kB and NF-kB-dependent luciferase activity. Consistent with the inhibitory effect on NF-kB activation, IKKa and IKKb activities were also suppressed by melittin. Surface plasmon resonance analysis realized that melitin binds to IKKa $(Kd\;=\;1.34{\times}10-9M)$ and IKKb$(Kd\;=\;1.0{\times}10-9M)$. Inhibition of IKKa and IKKb resulted in reduction of the SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of melittin on the IKKs activities, binding affinity of melittin to IKKs, and NO and PGE2 generation were blocked by addition of reducing agents dithiothreitol and glutathione. In addition, melittin did not show inhibitory effect in the transfected Synoviocytes with plasmid carrying dominant negative mutant IKKa (C178A) and IKKb (C179A). These results demonstrate that melittin directly binds to sulfhydryl group of IKKs resulting in IkBrelease, thereby inhibits activation of NF-kB and expression of genes involving in the inflammatory responses.

  • PDF

Lonicera Japonioa Inhibits the Production of NO through the Suppression of NF-kB Activity in LPS-stimulated Mouse Peritoneal Macrophages

  • Kim Young-hee;Kim Han-do
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.163-171
    • /
    • 2004
  • The flowers of Lonicera japonica Thunb. (Caprifoliaceae) has been used as anti-inflammatory drug in the folk medicine recipe and been proved its anti-inflammatory effect in the oriental medicine. However, the action mechanism of Lonicera japonica that exhibits anti-inflammatory effects has not been determined. Since nitric oxide (NO) is one of the major inflammatory parameter, we studied the effect of aqueous extracts of Lonicera japonica (AELJ) on NO production in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. NO and inducible NO synthase (iNOS) level were significantly reduced in LPS-stimulated macrophages by AELJ compared to those without Electrophoretic mobility shift assay (EMSA) indicated that AELJ blocked the activation of nuclear factor kappa B (NF-kB), which was considered to be a potential transcription factor for the iNOS expression. AELJ also blocked the phosphorylation and degradation of inhibitor of kappa B-alpha (IkB-${\alpha}$). Furthermore, IkB kinase alpha (IKK${\alpha}$), which is known to phosphorylate serine residues of IkB directly, is inhibited by AELJ in vivo and in vitro. These results suggest that AELJ could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of NF-kB activity.

  • PDF

Scrophularia Buergeriana inhibits the Production of NO through the Suppression of NF-kB adivity in LPS-stimulated Mouse Peritoneal Macrophages

  • Ha Mi Suk;Kim Young Hee;Ko Woo Shin;Kim Han Do
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1284-1290
    • /
    • 2002
  • Scrophularia buergeriana Miquel (Scrophulariaceae) has been used as an anti-inflammatory drug in the folk medicine recipe and been proved its anti-inflammatory effect in the oriental medicine. Since nitric oxide (NO) and superoxide anion (O/sub 2//sup -/) are ones of the major inflammatory parameters, we studied the effect of aqueous extracts of Scrophularia buergeriana (SB) on NO and O/sub 2//sup -/ production in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. NO, O/sub 2//sup -/production and inducible NO synthase (iNOS) level were significantly reduced in LPS-activated macrophages by SB compared to those without. Electrophoretic mobility shift assay (EMSA) indicated that SB blocked the activation of NF-kB, which was considered to be a potential transcription factor for the iNOS expression. SB also blocked degradation of IkBα. Furthermore, IkB kinase alpha (IKKα), which phosphorylates serine residues of IkB directly, is inhibited by SB. These results suggest that SB could exert its anti-inflammatory actions by suppressing the activation of NF-kB through inhibition of IKK activity.

Protein Kinase B Inhibits Endostatin-induced Apoptosis in HUVECs

  • Kang, Hee-Young;Shim, Dong-Hwan;Kang, Sang-Sun;Chang, Soo-Ik;Kim, Hak-Yong
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.97-104
    • /
    • 2006
  • Endostatin is a tumor-derived angiogenesis inhibitor, and the endogenous 20 kDa carboxyl-terminal fragment of collagen XVIII. In addition to inhibiting angiogenesis, endostatin inhibits tumor growth and the induction of apoptosis in several endothelial cell types. However, the mechanisms that regulate endostatin-induced apoptotic cell death are unclear. Here, we investigated apoptotic cell death and the underlying regulatory mechanisms elicited of endostatin in human umbilical vein endothelial cells (HUVECs). Endostatin was found to induce typical apoptotic features, such as, chromatin condensation and DNA fragmentation in these cells. Thus, as the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, we investigated whether this pathway could protect cells against endostatin induced apoptosis. It was found that the inhibition of PI3K/PKB significantly increased endostatin-induced apoptosis, and that endostatin-induced cell death is physiologically linked to PKB-mediated cell survival through caspase-8.

The Effect of Cobrotoxin on $NF-{\kappa}B$ binding Activity in Raw264.7 cells

  • Yoo, Jae-Ryong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • Cobrotoxin, a venom of Vipera lebetina turanica, is a group of basic peptidescomposed of 233 amino acids with six disulfide bonds formed by twelve cysteins. NF-kB is activated by subsequent release of inhibitory IkB and translocation of p50. Since sulfhydryl group is present in kinase domain of p50 subunit of NF-kB, cobrotoxin could modify NF-kB activity by protein-protein interaction. We therefore examined effect of cobrotoxin on NF-kB activities in lipopolysaccharide (LPS) and sodium nitroprusside (SNP)-stimulated Raw 264.7 mouse macrophages. Cobrotoxin suppressed the LPS and SNP-induced release of IkB and p50 translocation resulted in inhibition of DNA binding activity of NF-kB. Inhibition of NF-kB resulted in reduction of the LPS and SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of cobrotoxin on the NF-kB activity were blocked by addition of reducing agents dithiothreitol and glutathione. These results demonstrate that cobrotoxin inhibits activation of NF-kB, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-kB signal pathway.

  • PDF

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung;Chang, Byung Joon;Oh, Seikwan;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.436-446
    • /
    • 2018
  • Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.

Free Radical Toxicology and Cancer Chemoprevention

  • Lin, Jen-Kun
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.83-88
    • /
    • 2001
  • Most reactive oxygen species (ROS) are free radicals and implicated in the development of a number of disease processes including artherosclerosis, neurodegenerative disorders, aging and cancer. ROS are byproducts of a number of in vivo metabolic processes and are formed deliberately as part of nor-mal inflammatory response. On the other hand, ROS are generated either as by products of oxygen reduction during xenobiotic metabolism or are liberated as the result of the futile redox cycling of the chemical agents including several chemical carcinogens. A better understanding of the mechanisms of free radical toxicity may yield valuable clue to risks associated with chemical exposures that leading to the development of chronic diseases including cancer. The molecular biology of ROS-mediated alterations in gene expression, signal transduction and carcinognesis is one of the important subjects in free radical toxicology. Epidemiological studies suggest that high intake of vegetables and fruits are associated with the low incidence of human cancer. Many phytopolyphenols such as tea polyphenols, curcumin, resveratrol, apigenin, genistein and other flavonoids have been shown to be cancer chemopreventive agents. Most of these compounds are strong antioxidant and ROS scavengers in vitro and effective inducers of antioxidant enzymes such as superoxide dismutatse, catalase and glutathione peroxidase in vivo. Several cellular transducers namely receptor tyrosine kinase, protein kinase C, MAPK, PI3K, c-jun, c-fos, c-myc, NFkB, IkB kinase, iNOS, COX-2, Bcl-2, Bax, etc have been shown to be actively modulated by phyto-polyphenols. Recent development in free radical toxicology have provided strong basis for understanding the action mechanisms of cancer chemoprevention.

  • PDF

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Inhibitory Effects of Piperine on the Production of Nitric Oxide, Interleukin-10 and Interleukine-12 in Murine Peritoneal Macrophages (복강 대식세포에서 피페린의 일산화질소, 인테루킨-10과 인테루킨-12의 억제 효과)

  • Bae, Gi-Sang;Lee, Ju-Sung;Sung, Kang-Keyng;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.452-456
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects and cellular mechanism of piperine on murine peritoneal macrophages. To evaluate the effects of piperine, we examined the production of nitric oxide (NO), interleukin (IL)-10 and IL-12. To investigate inhibitory mechanism of piperine, we examined the MAPKs and Ik-Ba in murine peritoneal macrophages, Piperine itself does not have any cytotoxic effect and reduced lipopolysaccharid (LPS), Poly(I:C), CpG-ODN -induced production of NO, IL-10 and IL-12 in peritoneal macrophages. Piperine inhibited the activation of extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK 1/2) not the activation of p38 and the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated murine peritoneal macrophages.ln conclusion, Piperine down-regulated LPS-induced production of NO, IL-10 and IL-12, which could provide a clinical basis for anti-inflammatory properties of piperine.

The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea (국내산 삼채 에탄올 추출물의 항염증 효과)

  • Bae, Gi-Choon;Bae, Dae-Yeoll
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2012
  • Objectives : Allium Hookeri (AH) is a traditional herb to treat inflammatory diseases in India and Myanmar. Recently, AH cultivation was succeeded in South Korea. This study was performed to evaluate the anti-inflammatory effects of Korean AH in RAW264.7 cells, mouse macrophage cell line. Methods : To evaluate the anti-inflammatory effects of root of AH, we prepared the 70% ethanol extract, then we examined the productions of nitrite, and pro-inflammatory cytokines. To examine the nitrite, and cytokines, the RAW264.7 cells were treated with AH, then stimulated with lipopolysaccharide (LPS, 500 ng/ml) for 24 h. Then the cells were harvested for griess assay, ELISA and real-time reverse transcription polymerase chain reaction (RT-PCR). Also to detect the ability of AH to induce heme oxygenase-1 (HO-1), we examined the HO-1 expression using real time RT-PCR and western blot. Furthermore, we examined the mitogen activated-protein kinases (MAPKs) and nuclear factor kappa B (NF-${\kappa}B$) activation to find out the underlying mechanisms. Results : AH ethanol extract significantly inhibited the productions of nitrite and interleukin (IL)-$1{\beta}$. AH treatment increased the HO-1 expression dramatically at 1 h, then peaked at 3 h. When the HO-1 was inhibited by tin (Sn) protoporphryin-IX (SnPP), the anti-inflammatory action of AH was reversed. AH treatment inhibited the activation of p38, but not extracelluar signal-regulated kinase (ERK 1/2) and c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-$B{\alpha}$) in the LPS-stimulated RAW 264.7 cells. Conclusions : These data could suggest that AH exerts anti-inflammatory influences through up-regulation of HO-1 and deactivation of p38.