• Title/Summary/Keyword: Ignition time

Search Result 628, Processing Time 0.02 seconds

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

Ignition Transition by Ignition Position and time of Gaseous Oxygen/Kerosene Combustor (기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구)

  • Song, Wooseok;Son, Min;Shin, Dongsoo;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.814-819
    • /
    • 2017
  • The objective of this paper is to observe effects of an ignition position and time on the ignition transition. A gaseous oxygen and liquid kerosene are used for propellants with the shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. The ignition position was changed with the injector spacer. Sequences except the igniter operation time were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Also, the unstable flame development zone was detected as the igniter was away from the injector.

  • PDF

Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components (모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구)

  • Kim, Gyujin;Lee, Sangyul;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time (점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구)

  • Ko, Min Wook;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

A Study on the Ignition Induction Time and Temperature Distribution at Spontaneous Ignition of Activated Carbon (활성탄의 자연발화에 있어서 발화유도시간과 온도분포에 관한 연구)

  • 최재욱;김상렬;이상록;최광재
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.44-49
    • /
    • 1993
  • The spontaneous ignition induction time and temperature distribution were observed by performing experiments for granulated activated carbon. As the results of the experiments at the same amplitude, the critical spontaneous ignition temperature was decreased with increase of the time period, while, the ignition induction time was increased with the increase of the time period. The critical spontaneous ignition temperature was decreased with the increase of the amplitude for the shorter period. The temperature distribution of the sample showed the highest around ignition-point at center of the vessel and after ignition the highest temperature was moved toward surface of the vessel.

  • PDF

Development of Ignitor of Open-Type Propulsion Device for Korean Interceptor (대응탄 개방형 추진장치용 점화기개발)

  • Kwon, Soon-Kil;Kim, Chang-Kee;Yun, Sang-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1166-1170
    • /
    • 2011
  • For developing the ignition device for the interceptor of Korean active protection system, the design parameters of the ignition device which should have a short ignition delay time and sufficient energy for propellant ignition were studied. The electric primer instead of mechanical primer was adopted for deceasing delay time, and ignition code was used for decreasing the time difference of flame propagation from the flame holes. The developed ignition device showed the ignition delay time of a few ms. When the designed ignition device was applied to the open-type propulsion devices, the stable interior ballistic characteristic was showed in a firing test.

Theoretical Analysis on the Hot Surface Ignition of a Rectangular-Shape Solid Fuel

  • Kim, Se-Won
    • Journal of Energy Engineering
    • /
    • v.4 no.2
    • /
    • pp.297-302
    • /
    • 1995
  • Ignition of a reactive solid in a shape of square corner by a hot surface is studied theoretically. Ignition time and the location of ignition point are determined as a function of dimensionless parameters, with the use of the homogeneous model of ignition. The effect of geometry on the ignition of solid fuel results in the local characteristics: the reaction is initiated in a hot point in depth of the substance. It is shown that ignition time is proportional to the dimensionless initial temperature, whereas for the ignition of the semiinfinite body this dependence was quadratic.

  • PDF

Experimental study of solid fuel ignition in a confined enclosure (밀폐공간내 복사에 의한 고체연료 점화의 실험적 연구)

  • Kim, Yeong-Gwan;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3630-3638
    • /
    • 1996
  • An experimental study has been conducted to explore the behaviors of the radiative ignition of polymethylmetacrylate(PMMA) in a confined enclosure such as the ignition delay time, PMMA surface temperature, the ignition location and the ignition process. In addition, the effects of hot wall orientation on the ignition delay and PMMA surface temperature were studied. When the hot wall is located at the bottom, ignition delay time is the shortest. Ignition surface temperature becomes the lowest for the hot top wall case. These are due to buoyancy effect. Since the radiative heat flux of hot wall is rather lower than laser source, the ignition is considered to be controlled by the mixing process. Therefore, the ignition location, where appropriate mixture of fuel and oxygen exists, occurs near the hot wall. The flame propagates along the hot wall where there exists sufficient oxygen.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

LASER-INDUCED IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE

  • Jae-Ou Chae;Gregory N. Mokhin;Nam-Ki Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.157-168
    • /
    • 1995
  • Ignition of a reactive solid with rough surface by constant heat flux is studied. The geometry of surface is represented by a protrusion in shape of cone of infinite length. Ignition time and ignition criterion versus apex angle are determined, with the use of heterogeneous model of ignition. To study the effect of geometry on ignition the results are compared with the known results for the one-dimensional ignition of the semi-infinite body. It is shown, that: a) ignition time depends strongly upon the apex angle and is proportional to the angle to the second power; b) ignition criterion and ignition temperature do not depend strongly on angle. The ignition delay and the energy required for the successful ignition are substantially reduced compared to the one-dimensional case.

  • PDF