• Title/Summary/Keyword: Ignition source

Search Result 190, Processing Time 0.019 seconds

A Study on the Development of Simulating Tool for Evaluation of Electrostatic Discharge (정전기 방전 평가를 위한 간이형 도구 개발에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2011
  • Explosion and fire cause about 30 reported industrial major accidents a year by ignition source which discharge of electrostatic generated to flammable gas, vapor, dust and mixtures. It brings economically and humanly very large loss that accident was caused by fire and explosion from electrostatic discharge. Thus, it is very important that electrostatic discharge energy is to be control below not to be igniting flammable mixtures. There are two kinds of analysis model for electrostatic discharge, human body model and machine model. Human body model is available the parameter of human's electrical equivalent that capacitance is 100 pF, resistance is $1.5k{\Omega}$. To simulate and visualize the electrostatic discharge from human body need a very expensive and high voltage simulator. In this paper, we measured the value of capacitance and resistance concerned with test materials and sizing of specimen and the value of charged voltage concerned with test specimen and distance to develop an electrostatic charge/discharge simulating tool for teaching with which concerned industrial employee and students. The result of experiments, we conformed that the minimum ignition energy of methane-oxygen mixtures meets well the equation $W=1/2CV^2$, and found out that the insulating material and sizing of equivalent value having human body mode are the poly ethylene of 200 mm and 300 mm of diameter. Developed electrostatic charge/discharge simulating tool has many merits; simple mechanism, low cost, no need of electric power and so on.

A Study on the 3-Dimensional Simulation System using Industrial Source Complex Model (Industrial Source Complex Model을 이용한 3차원 모사에 관한 연구)

  • Lim Dong Yun;Kim Sung Bin;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.15-19
    • /
    • 2000
  • This study compared and analyzed existing research on dispersion models and selected the EPA's Industrial Source Complex(ISC) model as a model suitable for the domestic petrochemical industry for 3-dimensional simulation and developed a simulation system applying. 3-dimensional algorithm with this ISC dispersion model as a basis As a result of this study, the 3D dispersion model based on ISC can help estimate a exact accident damage zone, make a emergency plan and control a ignition source.

  • PDF

Scientific fire investigation by NFPA 921 CODE based on frozen warehouse fire case (냉동창고 화재 사례를 기반으로 하는 NFPA 921 CODE에 의한 과학적 화재조사 연구)

  • Park, Kyong-Jin;Lee, Yong-KI;Cha, Sung-Sig;Jung, Dong-Young;Kim, Jang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.78-85
    • /
    • 2018
  • In this study, we investigated the cases where there were many opinions in the judgment of the cause of ignition in the case of 20 cases of frozen warehouse fire that occurred in 2017.The research methodology is the scientific fire survey method prescribed by the NFPA 921 CODE. Scientific fire investigation method is fire investigation method by logical reasoning through hypothesis setting, minimizing errors in judgment of ignition source. On the other hand, unscientific fire investigation methods cause many errors by the intervention of irrational factors such as subjective estimation, reasoning judgment, etc. This eventually leads to the problem of human and material responsibility and academic deterioration. In particular, fire not seen as compared to sighted fire makes more errors in ignition sources in the cause investigation. In this study, we set the hypothesis A and hypothesis B based on the review of the fire investigation report and the field survey on the fire case of the cold storage warehouse front line that occurred at ** city ** Mart in 2017.The set hypothesis was tested by the NFPA 921 code. This analytical method will be constructed by NEW Paradigm as a source of fire that is not seen in the future and a source of ignorant fire.In addition, the experimental data of this study will be used to inform the manufacturer and operator of the refrigeration warehouse and serve as basic data for fire prevention.

LATEST INTERNATIONAL DEVELOPMENTS IN PASSIVE FIRE PROTECTION

  • Marx, Olliver
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.227-243
    • /
    • 1997
  • Fire and smoke can from a small ignition source develop rapidly. Active systems in combination with Passive Fire Protection measures will offer highest safety standards to the building's developers and occupants. Nevertheless, the fire growth is very unpredictable and it is therefore essential at the planning stage that tested solutions are well selected according to National codes and later on installed by qualified contractors to ensure optimum performance. This demonstrates that Passive Fire Protection as safety measure cannot be neglected. Recent fire cases all over the world still proof that fire can develop any time and any where even in countries of high safety standards.

  • PDF

A Study on the Arc Characteristics and Weld Pool Analysis of GHTAW under the Space Environment (우주 환경에서 GHTAW 아크 특성과 용융지 해석에 관한 연구)

  • Lee, Sang-Hoon;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • The purpose of this paper is to understand the behavior of GHTAW process under the space environment with the experimental and numerical analysis. Gas Hollow Tungsten Arc Welding (GHTAW) using a hollow tungsten electrode was adopted, since the ignition and discharge of a conventional GTAW process is not appropriate to the space environment due to low pressure in space. In order to clarify the phenomena of GHTAW under space environment, an investigation of thermal and physical properties of the GHTAW arc plasma was experimentally performed under low pressure conditions. Furthermore, the molten pool behavior and weldment of GHTAW were understood by CFD-based numerical analysis, based on the models of GHTA heat source, arc pressure and electromagnetic force induced by arc plasma, the characteristics of which were obtained by the captured images of a CCD camera.

Analysis on the lgnition Charac teristics of Pseudospark Discharge Using Hybrid Fluid-Particle(Monte Carlo) Method (혼성 유체-입자(몬테칼로)법을 이용한 유사스파크 방전의 기동 특성 해석)

  • 심재학;주홍진;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.571-580
    • /
    • 1998
  • The numerical model that can describe the ignition of pseudospark discharge using hybrid fluid-particle(Monte Carlo )method has been developed. This model consists of the fluid expression for transport of electrons and ions and Poisson's equation in the electric field. The fluid equation determines the spatiotemporal dependence of charged particle densities and the ionization source term is computed using the Monte carlo method. This model has been used to study the evolution of a discharge in Argon at 0.5 torr, with an applied voltage if 1kV. The evolution process of the discharge has been divided into four phases along the potential distribution : (1) Townsend discharge, (2) plasma formation, (3) onset of hollow cathode effect, (4) plasma expansion. From the numerical results, the physical mechanisms that lead to the rapid rise in current associated with the onset of pseudospark could be identified.

  • PDF

Signal Amplifying Gate Driver of Self-Excited Electronic Ballast for High Pressure Sodium (HPS) Lamp (고압 나트륨램프용 자려식 전자식 안정기의 신호 증폭형 게이트 구동회로)

  • Young, Yong-Sik;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1304-1306
    • /
    • 1996
  • A regenerative signal amplifying gate driver of self-excited electronic ballast is presented. It can be used for high pressure sodium (HPS) lamp without auxiliary external ignitor. Since the HPS lamp requires very high ignition voltage at start up, the resonant frequency of the circuit must be increased to obtain high voltage oscillations in spite of relatively small resonant current. The presented gate driver amplifies the current of gate drive transformer and raises the gate-source voltage Quickly to turn on the MOSFET switches. Hence, the resonant frequency can be increased more than 100kHz. The HPS lamp used in the simulation and experiment has the rating of 400W input power at 220V input ac voltage source. The experiments show that the resonant frequency is above 150kHz at start up.

  • PDF

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

Analysis of Sensitivity, Correlation Coefficient and PCA of Input and Output Parameters using Fire Modeling (화재모델링을 이용한 입출력 변수의 민감도, 상관계수 분석과 주성분 분석)

  • Nam, Gi Tae;Kim, Jeong Jin;Yoon, Seok Pyo;Kim, Jun Kyoung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.46-54
    • /
    • 2019
  • Even though the fire performance-based design concept has been introduced for various structures and buildings, which have their own specific fire performance level, the uncertainties of input parameters always exist and, then, could reduce significantly the reliability of the fire modeling. Sensitivity analysis was performed with three limited input parameters, HRRPUA, type of combustible materials, and mesh size, which are significantly important for fire modeling. The output variables are limited to the maximum HRR, the time reaching the reference temperature($60^{\circ}C$), and that to reach limited visible distance(5 m). In addition, correlation coefficient analysis was attempted to analyze qualitatively and quantitatively the degree of relation between input and output variables above. Finally, the relationship among the three variables is also analyzed by the principal component analysis (PCA) to systematically analyze the input data bias. Sensitivity analysis showed that the type of combustible materials is more sensitive to maximum HRR than the ignition source and mesh size. However, the heat release parameter of the ignition source(HRR) is shown to be much more sensitive than the combustible material types and mesh size to both time to reach the reference temperature and that to reach the critical visible distance. Since the derived results can not exclude the possibility that there is a dependency on the fire model applied in this study, it is necessary to generalize and standardize the results of this study for the fire models such as various buildings and structures.

Experimental and Analytical Study on Hydrogen-air Deflagrations in Open Atmosphere (개방 공간에서 발생하는 수소-공기 혼합 가스 폭연에 대한 실험적/해석적 연구)

  • Kim, Yangkyun;Park, Byoung Jik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Experimental and analytical investigations are performed to explore the explosion characteristics of a hydrogen-air mixture in open atmosphere. A hydrogen-air mixture tent of total volume of 27 m3, with 40% hydrogen volume, is used to observe overpressure at a distance from the ignition source. Vapor cloud explosion analyses are performed using the TNO multi-energy model and Baker-Strehlow-Tang model. The results of these analyses are compared with experiment done from this study and references. The experimental results with and without obstacles indicate that the overpressure values measured at a distance of 4.5-21.5 m from the ignition source are about 9.4-3.6 kPa and 6.5-2 kPa, respectively. This implies that the overpressure with obstacles is approximately 1.7 times greater than that without obstacles. Analytical observation indicates that the results obtained with the Baker-Strehlow-Tang model with Mf = 0.2-0.35 are in good agreement with those of most of the previous studies, including that obtained from this study. Moreover, the TNO multi-energy model with a volume of 27 m3 well predicts the overpressure obtained from this study. Further studies should considered explosions in semi-confined spaces, which is more suitable for hydrogen refueling stations.