• Title/Summary/Keyword: Ignition rate

Search Result 575, Processing Time 0.026 seconds

Ignition Studies Of Igniter using Hydrogen Peroxide And Kerosene (Catalyst Ignition) (과산화수소/케로신(촉매점화) 점화기의 점화특성에 관한 연구)

  • Kim, Ki-Woo;Kim, Tae-Wan;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.57-60
    • /
    • 2009
  • Exothermic and ignition characteristic of igniter is very important factor in engine performance. Since the igniter performance is effected by Hydrogen Peroxide decomposition rate, we have to test the preliminary catalyst performance test. In this report, after making igniter using hydrogen peroxide/kerosene, a thermal characteristic were examined by comparing hydrogen peroxide mass and catalyst mass. And then we study ignition characteristic of the affects of O/F ratio using the previous data.

  • PDF

Aft-Igniter Performance related to the Formulation and the Shape of Ignition Charge (점화제 조성과 형상에 따른 후방 점화기 성능)

  • Jung, Jin-Suk;Ahn, Gil-Hwan;Jang, Seung-Gyo;Ryu, Byung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.387-393
    • /
    • 2014
  • The combustion pressure and thrust of aft-igniter were measured to investigate the characteristics of ignition charge. Granule and pellet shape ignition charge of $BKNO_3$ and MTV(Magnesium-Teflon-Viton) were used for igniters. Ignitions with granule charges show abrupt increases of combustion pressure and thrust compared to those of pellet charge. $BKNO_3$ igniter shows higher combustion pressure than MTV igniter due to higher combstion rate. Mg particle size affects the combustion pressure of MTV igniter.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System (EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;허성근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

INFLUENCE OF THE MIXING RATIO OF DOUBLE COMPONENTIAL FUELS ON HCCI COMBUSTION

  • Sato, S.;Kweon, S.P.;Yamashita, D.;Iida, N.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 2006
  • For practical application on the HCCI engine, the solution of subjects, such as control of auto-ignition timing and avoidance of knocking, is indispensable. This study focused on the technique of controlling HCCI combustion appropriately, changing the mixture ratio of two kinds of fuel. Methane and DME/n-Butane were selected as fuels. The influences, which the mixing ratio of two fuels does to ignition timing, ignition temperature, rate of heat release and oxidation reaction process, were investigated by experiment with 4-stroke HCCI engine and numerical calculation with elementary reactions.

The Addition Effect of on Methane Ignition behind Reflected Shock Waves

  • Ji, Seong Bae;Kim, Gil Yeong;Sin, Gwan Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.957-958
    • /
    • 2000
  • The addition effect of $CH^3Br$ on the ignition of methane was investigated in the temperature range of 1537-1920 K behind reflected shock waves. The ignition delay times were measured by the sudden increase of pres-sure and OH emission in the $CH_4-O_2-Ar$ system containing small amount of $CH_3Br.$ The delay times of mix-tures with $CH_3Br$ were shorter than those without $CH_3Br.$ The promotion of ignition by $CH_3Br$ was caused by the relative fast decomposition rate in additive. To clarify the addition effect of $CH_3Br$ from the viewpoint of the reaction mechanism, computational analyses were performed in $CH_4-CH_3Br-O_2-Ar$ mixtures.

Study on Factors Influencing Cyclic Variations at Idle in Spark Ignition Engine (스파크 점화기관의 공회전 시 싸이클 변동에 영향을 주는 인자 고찰)

  • D.H. Kwon;Park, Y.K.;Kim, J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1249-1252
    • /
    • 2003
  • To analyse the cyclic variations in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper is to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. The burn rate analysis program was used and the burn parameters were used to determine the variations in the input parameter. In this study, the author investigated the relationship of indicated mean effective pressure, coefficient of variation of indicated mean effective pressure and burn angles, and lowest normalized value in a spark ignition engine for the cyclic variations.

  • PDF

Flow and Combustion Characteristics according Control Strategy of Variable Valve Duration System for Compression Ignition Engine (압축착화기관용 가변밸브 듀레이션(VVD)시스템의 제어전략에 따른 유동 및 연소성능 해석)

  • Cho, Insu;Kim, Wootaek;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • Recently, global warming and environmental pollution are becoming more important, and fuel economy is becoming important. Each automobile company is actively developing various new technologies to increase fuel efficiency. CVVD(Continuously Variable Valve Duration) system means a device that continuously changes the rotational speed of the camshaft to change the valve duration according to the state of the engine. In this paper, VVT(Variable Valve Timing) and CVVD were applied to a single-cylinder diesel engine, and the characteristics of intake and exhaust flow rate and in-cylinder pressure characteristics were analyzed by numerical analysis. In order to analyze the effect of CVVD on the actual engine operation, the study was performed by setting the valve control and injection pressure as variables in two sections of the engine operating region. As a result, In the case of applying CVVD, the positive overlap with the exhaust valve is maintained, thus it is possible to secure the flow smoothness of air and increase the volumetric efficiency by improving the flow rate. The section 2 condition showed the highest peak pressure, but the pressure rise rate was similar to that of the VVT 20 and CVCD 20 conditions up to 40 bar due to the occurrence of ignition delay.

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel (플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향)

  • Kim, Munheon;Yoo, Hoseon;Oh, Byungjin;Park, Jungseo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.

A Study on Fire Characteristics of Carpet and Curtain Treated or Untreated with Flame Retardant (카페트와 커튼의 방염처리 및 사용여부에 따른 화재특성에 관한 연구)

  • Lee, Hae-Pyeong;Park, Young-Ju
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.74-81
    • /
    • 2007
  • In this study, we have evaluated the hazardous factors of fires such as heat release rate, smoke density, ignition temperature, and flammability of carpet and curtain used in the public facilities. As a result of flame retardant treatment, the heat release rate of materials treated with flame retardant was lower than that of not treated. However, the smoke density of treated materials was higher than that of not treated. Also, we have investigated the fire characteristics of used and unused carpet. As a result, the heat release rate and the smoke density of used for 3 years carpet were higher than those of unused carpet. The distinct differences of flammability and ignition temperature between used and unused carpet were confirmed.