• Title/Summary/Keyword: Ignition rate

Search Result 573, Processing Time 0.021 seconds

A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam (경질 폴리우레탄폼의 착화성 및 열방출특성 연구)

  • 공영건;이두형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.117-123
    • /
    • 2003
  • In this study; the ignition and heat release rate characteristics of rigid polyurethane foam were investigated in accordance with setchkin ignition tester and cone calorimeter which is using oxygen consumption principle. In the ignition temperature study; flash-ignition temperature was $383^{\circ}C$-$390^{\circ}C$, self-ignition temperature was$ 493^{\circ}C$∼495$^{\circ}C$. The self-ignition temperature of rigid polyurethane foam was about $100^{\circ}C$ higher than the flash-ignition temperature. In the cone calorimeter study, the time to ignition of rigid polyurethane foam was faster as the external heat flux increase. In the same heat flux level, the time to ignition was faster as the density of rigid polyurethane foam decrease. Also the heat release rate was the largest value at the heat flux of /$50 ㎾\m^2$ and had a tendency of increase as the heat flux level and density increase. In the standpoint of time to ignition and heat release rate, the fire performance of rigid polyurethane foam was influenced by the applied heat flux level and density and the flashover propensity classified by Petrella's proposal was high.

An Experimental and Mathematical Study on the Effects of Ignition Energy and System on the Flame Kernel Development

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.829-838
    • /
    • 2002
  • A constant volume combustion chamber is used to investigate the flame kernel development of gasoline air mixtures under various ignition systems, ignition energies and spark plugs. Three kinds of ignition systems are designed and assembled, and the ignition energy is controlled by the variation of the dwell time. Several kinds of spark plugs are also tested. The velocity of flame propagation is measured by a laser deflection method, and the combustion pressure is analyzed by the heat release rate and the mass fraction burnt. The results represent that as the ignition energy is increased by enlarging either dwell time or spark plug gap, the heat release rate and the mass fraction burnt are increased. The electrodes materials and shapes influence the flame kernel development by changing he transfer efficiency of electrical energy to chemical energy. The diameter of electrodes also influences the heat release rate and the burnt mass fraction.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel (정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정)

  • 김문헌;문경태;박정서;김홍성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.

A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle (LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰)

  • Chun, Bongjun;Park, Myungho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber (정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

Asymptotic Analysis on the Stagnation-Point Ignition of Hydrogen-Oxygen Mixture at High Pressures (고압하에서 수소-산소의 정체점 점화에 관한 이론적 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1393-1400
    • /
    • 2003
  • Ignition of hydrogen and oxygen in the "third limit" is theoretically investigated in the stagnation point flow with activation energy asymptotics. With the steady-state approximations of H, OH, O and HO$_2$, a two-step reduced kinetic mechanism is derived for the regime lower than the crossover temperature T$_{c}$ at which the rates of production and consumption of all radicals are equal. Appropriate scaling of Damkohler number successfully provides the explicit relationship between pressure, temperature and strain rate at ignition. It is shown that, compared with those for the counterflow, ignition temperatures for the stagnation point flow are considerably increased with increasing the system pressure. This is because ignition in the "third limit" is characterized by the production of reduction of $H_2O$$_2$, which is reduced by wall effect. Strain rate substantially affects ignition temperature because key reaction rates of $H_2O$$_2$ are comparably with its transport rate, while the mixture temperature and the hydrogen composition do not significantly affect ignition temperature.e.

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

A study on the engine performance in a multiple spark ignition engine (다회수 스파크 점화기관의 기관성능에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF