• Title/Summary/Keyword: Ignition possibility

Search Result 94, Processing Time 0.024 seconds

Implementation of Dynamic Context-Awareness Platform for IoT Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chigon;Yoon, Changpyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.346-348
    • /
    • 2022
  • A monitoring system was constructed to identify the cause of occurrence based on data on the analysis of the ignition factors of fermentation heat generated from loading waste. Universal Middleware was used to provide a real-time run-time environment for the configuration and speed of scenarios for each type of fire early warning. It is necessary to dynamically recognize the loading height and pressure of the loading waste, the drying of wood, batteries, and plastic waste, which are representative compositional wastes, and the carbonization changes on the surface. Therefore, this IoT situation recognition platform for analyzing low-temperature-fired fire possibility data was dynamically configured and presented.

  • PDF

Performance evaluation of an improved pool scrubbing system for thermally-induced steam generator tube rupture accident in OPR1000

  • Juhyeong Lee;Byeonghee Lee;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1513-1525
    • /
    • 2024
  • An improved mitigation system for thermally-induced steam generator tube rupture accidents was introduced to prevent direct environmental release of fission products bypassing the containment in the OPR1000. This involves injecting bypassed steam into the containment, cooling, and decontaminating it using a water coolant tank. To evaluate its performance, a severe accident analysis was performed using the MELCOR 2.2 code for OPR1000. Simulation results show that the proposed system sufficiently prevented the release of radioactive nuclides (RNs) into the environment via containment injection. The pool scrubbing system effectively decontaminated the injected RN and consequently reduced the aerosol mass in the containment atmosphere. However, the decay heat of the collected RNs causes re-vaporization. To restrict the re-vaporization, an external water source was considered, where the decontamination performance was significantly improved, and the RNs were effectively isolated. However, due to the continuous evaporation of the feed water caused by decay heat, a substantial amount of steam is released into the containment. Despite the slight pressurization inside the containment by the injected and evaporated steam, the steam decreased the hydrogen mole fraction, thereby reducing the possibility of ignition.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

The Study on Experimental Method of Smoldering Ground Fire in Forest Fire (뒷불 특성에 관한 실험방법 연구)

  • Kim, Dong-Hyun;Kim, Jang-Hwan;Kim, Eung-Sik
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A smoldering ground fire can be a probable cause of reignition of surface fire when transmitted from Fermentation layer to Humus layer with temperature higher than that of ignition. Purpose of this paper is to identify experimental methodology on the potential risk of a smoldering ground fire, which is similar to the real surface fuel bed, and its combustion characteristics. The fuel model designed in this study is composed of 3 layers such as Litter layer, Fermentation layer and Humus layer and 8 Thermocouples are set through 3 layer at each boundary and in between to detect the temperature change and duration of smoldering and propagation velocity. As a result, it was observed that ignition conditions in the boundary between L layer and F layer determined transmission and non-transmisstion to F-H layer. In addition, range of critical humidity at which a smoldering ground fire was transmitted in a material layer was 33~44% and when temperature exceeds $350^{\circ}C$, likelihood of transmission of a smoldering ground fire was high. In the research, the experimental model for multi-layer smoldering ground fire is suggested and information about propagation of smoldering fire, possibility of reignition according to moisture content, propagation velocity and temperature change are obtained, Also, the built-up methods were established to help analyze basic characteristics of smoldering ground fire.

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.

Enhancement of Thermal Insulation Performance with Phase Change Material for Thermal Batteries (상변화 물질을 이용한 열전지 단열성능 향상에 관한 연구)

  • Lee, Jaein;Ha, Sang-hyeon;Kim, Kiyoul;Cheong, Haewon;Cho, Sungbaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2016
  • Thermal batteries are primary reserve power sources, which are activated upon the melting of eutectic electrolytes by the ignition of heat sources. Therefore, sufficient thermal insulation is absolutely needed for the stable operation of thermal batteries. Currently, excessive amount of heat sources is being used to compensate the heat loss in the cell stack along with the insertion of metal plates and thermal insulators to reserve heat at the both ends of cell stack. However, there is a possibility that the excessive heat flows into the cell stack, causing a thermal runaway at the early stage of discharge. At the same time, the internal temperature of thermal batteries cannot be maintained above the battery operating temperature at the later stage of discharge because of the insufficient insulation. Therefore, the effects of Phase Changing Material(PCM) plates were demonstrated in this study, which can replace the metal and insulating plates, to improve the thermal insulation performance and safety of thermal batteries.

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

A study on the possibility that livestock waste to RDF (축산폐기물의 고형연료화 가능성에 관한 연구)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • This research conducted component analysis of pellet fuel using livestock waste and agricultural by-product and combustion characteristics. As the result of analyzing the characteristics of solid fuel using livestock waste, three components, element analysis, and heating value were suitable for the standard of solid fuel. In addition, content of ash consisted of high concentration of K, P, Na indicating the possibile usage as a soil conditioner. However, it was not suitable for solid fuel using only livestock waste due to the relatively low heating value. To improve the heating value and early ignition, we mixed agricultural by-products (i.e., chaff and sawdust) into livestock waste. The mixed material showed significant increase of combustibles and heating value with decrease of moisture content compared to the livestock waste only.

Fire Performance Testing Method for Fire Retardant EPS Sandwich Panel Using X-ray Analysis (X-선 분석법을 이용한 난연 EPS 샌드위치 패널의 화재성능평가 방법에 관한 연구)

  • Shim, Ji-Hun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.76-83
    • /
    • 2015
  • EPS sandwich panel contains flame retardants that slow down ignition during fires,reduce the amount of heat generated, and block the spread of combustion. However, if a sandwich panel does not satisfy standards for fire-retardant performance, it may increase damage to property and human life. It is difficult to test the fire-retardant performance of a finishing material with the naked eye, so it is necessary to develop convenient and fast evaluation methods that are convenient and fast. In this study, a fire safety evaluation method for EPS sandwich panel was analyzed using X-ray to detect specific components related to the fire-retardant performance X-ray fluorescence analysis (XRF) indicated that suitable panel products contained more aluminum in comparison to unsuitable products. Gibbsite was identified as the main crystalline material of flame retardant EPS through X-ray diffraction analysis (XRD) and was included in both suitable products and unsuitable products, but there was a difference in crystalline structure. This study was verifies the possibility of evaluating fire-retardant performance using ultimate analysis and crystal analysis through these X-ray methods.