• Title/Summary/Keyword: Ignition catalyst

Search Result 75, Processing Time 0.027 seconds

The Experimental Study of Atomization Characteristics of Gasoline Spray Impinging on Glow Plug

  • Moon, Young-ho;Oh, Young-taig
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In order to reduce the exhaust emissions of a spark ignition engine, it is important not only to improve the catalyst conversion efficiency, but also to directly reduce the engine-out exhaust emissions during a cold starting of the engine and warm up periods. The purpose of this study is to evaluate feasibility of a glow plug for an early fuel evaporator. In order to promote atomization, gasoline is injected on the glow plug with room temperature(20$\^{C}$) and high temperature(250$\^{C}$). To analyze the spray behavior characteristics, a PMAS is used to measure the SMD and the dropsize distribution of an impinging spray and a free spray. Results show that the evaporation rate of the impinging spray on the high temperature surface of the glow plug was higher than that of the free spray on the room temperature surface.

The Experimental Study of Early Fuel Evaporation Characteristics Gasoline Engine Using Glow-Plug (Glow-Plug를 이용한 가솔린 연료의 조기증발 특성 실험 연구)

  • 문영호;김진구;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • In order to reduce hydrocarbon emissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to reduce direct engine out hydrocarbon emissions, during cold starting and warm up process. Tjerefore many researchers have been attracted to develop an early fuel evaporator (EFE) by introducing a ceramic heater for a solution of engine out hydrocarbon emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has nat been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug for EFE.

  • PDF

Catalytic Effects of Barium Carbonate on the Anodic Performance of Solid Oxide Fuel Cells

  • Yoon, Sung-Eun;Ahn, Jae-Yeong;Park, Jong-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.350-355
    • /
    • 2015
  • To develop ceramic composite anodes of solid oxide fuel cells without metal catalysts, a small amount of barium carbonate was added to an $(La_{0.8}Sr_{0.2})(Cr_{0.5}Mn_{0.5})O_3(LSCM)$ - YSZ ceramic composite anode and its catalytic effects on the electrode performance were investigated. A barium precursor solution with citric acid was used to synthesize the barium carbonate during ignition, while a barium precursor solution without citric acid was used to create hydrated barium hydroxide. The addition of barium carbonate to the ceramic composite anode caused stable fuel cell performance at 1073 K; this performance was higher than that of a fuel cell with $CeO_2$ catalyst; however, the addition of hydrated barium hydroxide to the ceramic composite anode caused poor stability of the fuel cell performance.

The Effects of Fuel Injection Skips on the Reduction of Harmful Exhaust Gases during an SI Engine Starting (가솔린 기관의 시동시 연료분사스킵이 유해배출가스 저감에 미치는 영향)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • During the SI engine starting up, starting conditions directly contribute to the harmful emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame Ionization Detector(FRFID). The result showed that HC emissions, which were generated during initial stage of the starting, could be reduced by coolant temperature and fuel injection skips. And through the vehicle test of ECE15+EUDC, it is convinced that the optimized fuel injection skip method according to coolant temperatures have favourable effects on the reduction of harmful exhaust emissions including HC during the SI engine start.

  • PDF

A Experimental Study for Improving Performance of Igniter for Amateur Small Rockets (아마추어 소형로켓 점화기 성능 향상을 위한 실험적 연구)

  • Sim, Ju-Hyen;Lim, Seung-Vin;Park, Sang-Sub;Park, Wan-Ju;Lee, Jin-Sung;Choi, Jae-Won;Hong, Ju-Hyun;Chae, Jae-Ou
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-358
    • /
    • 2008
  • Inha Rocket Research Institute has made the igniter that is combination of black powder and PVA polymer for ignition small rocket. But recent igniter is not satisfy because of the performance of igniter is not identified. So, we confirmed requirement of igniter by comparing of ratio of black powder and PVA through experimental method. Especially we studied with ignition temperature for propellant and stable combustion pressure that is requirements of propellant. We can know the tendency of combustion properties by ratio of oxidizer and combustion catalyst through changing of temperature and pressure of exhaust gas of igniter.

  • PDF

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.