• 제목/요약/키워드: Ignition and combustion

검색결과 1,165건 처리시간 0.024초

코로나 방전을 이용한 고에너지 점화 시스템 개발 (Development of a High Energy Ignition System Using Corona Discharge)

  • 박경석;최두원;강혜현;이종화;박진일
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.650-655
    • /
    • 2015
  • A high energy ignition system is essential for lean burn or high EGR gasoline engine, which is getting more and more interest to improve fuel economy. The high energy ignition systems comprise plasma jet, laser beam, corona discharge and so on. In this study, a high energy ignition system using corona discharge is developed and tested in a constant volume combustion chamber. The developed system shows extension of lean limit of propane-air mixture and enhencement of combustion speed. Various shape of corona discharge plugs are also tested and compared in this study.

인젝터 특성에 따른 2중 연료의 RCCI 연소에 관한 실험적 연구 (An Experimental Study on RCCI(Reactivity Controlled Compression Ignition) Combustion of Dual-fuel due to Injector Characteristics)

  • 성기안
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.110-115
    • /
    • 2012
  • This study describes the characteristics of combustion and exhaust emission in the special engine applying a fuel reactivity controlled compression ignition (RCCI) concept with two different energizing type (solenoid and piezoelectric) injectors for diesel injection. A diesel-gasoline mixed dual-fuel reactivity controlled compression ignition concept is demonstrated as a promising method to achieve high thermal efficiency and low emission in internal combustion engines for transportation vehicles. For investigating the combustion characteristics of RCCI, engine experiments were performed in a light-duty diesel engine over a range of injection timing and mixing rate of gasoline in mass. It was investigated that by increasing the nozzle hole diameter, increasing the combustion pressure and the net indicated mean effective pressure. $NO_x$ and soot can be reduced by advancing start of injection in 84 mixing rate of gasoline in mass. The resulting operation showed that light duty engine could achieve 48 percent net indicated efficiency and 191[g/kW-hr] net indicated specific fuel consumption with lower levels of nitrogen oxides and soot.

엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구 (The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.

Combustion Characteristics and Application of Cyclon Combustor

  • Chae, J.O.;Xu, F.Z.;Yu, J.;Moon, S.I.;Kim, K.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.82-89
    • /
    • 2001
  • This paper concerns lean gas cyclone combustion system adopting distributed inlets with different velocity to promote ignition and burnout properties. Detailed temperature measurements have been achieved under different operating conditions and flue gas compositions and NOx have been measured. Experimental results show that cyclone combustor provided increasing combustion stability and reduction NOx emission level to negligible level.

  • PDF

DME 분사 시기 조절을 통한 수소-DME 부분 예혼합 압축착화 연소 제어 (Combustion Control through the DME Injection Timing in the Hydrogen-DME Partially Premixed Compression Ignition Engine)

  • 전지연;배충식
    • 한국연소학회지
    • /
    • 제18권1호
    • /
    • pp.27-33
    • /
    • 2013
  • Hydrogen-dimethy ether(DME) partially premixed compression ignition(PCCI) engine combustion was investigated in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME was injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME inejction timing was varied to find the optimum PCCI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. As the DME injection was retarded, the CO and HC emissions were decreased due to high combustion efficiency. NOx emissions were increased due to the high in-cylinder temperature. When DME were injected at $-30^{\circ}CA$ aTDC, reduction of HC, CO and NOx emissions was possible with high value of IMEP.

직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구 (A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine)

  • 이창희;최영종;임경빈;이기형
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구 (The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime)

  • 송재혁;강기중;;;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.

Eulerian 및 Lagrangian CMC 모델을 사용한 디젤분무연소 모델링에 관한 연구 (A Study on Diesel Spray Combustion Modeling by Eulerian and Lagrangian Conditional Moment Closure Models)

  • 김우태;조현수;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.195-198
    • /
    • 2012
  • Numerical simulation is performed to evaluate the conditional moment closure (CMC) models for spray development, ignition, and turbulent combustion for the Engine Combustion Network (ECN) test cases. The CMC model is implemented in the open source code, OpenFOAM, to provide conditional flame structures through the solution of Eulerian as well as Lagrangian conditional transport equations. In spite of more accurate treatment of the convective term, Eulerian CMC provides similar ignition delays and lift-off lengths with Lagrangian CMC.

  • PDF

RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구 (Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine)

  • 함윤영;민선기
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.75-82
    • /
    • 2021
  • 디젤엔진의 열효율을 높이면서 NOx와 PM을 효과적으로 저감시키기 위해 HCCI(Homogeneous Charge Compression Ignition), PCCI(Premixed Charge Compression Ignition), RCCI(Reactivity Controlled Compression Ignition) 등의 저온연소(LTC: Low Temperature Combustion)전략이 개발되어 왔다. 본 연구에서는 저반응성 연료로는 가솔린을 사용하고 고반응성 연료로는 디젤을 사용하는 RCCI 엔진에서 고반응성 연료인 디젤연료의 분사 시기와 이단 분사비율이 성능 및 배출가스에 미치는 영향을 수치해석을 통하여 파악하고자 하였다. 이단 분사 시 첫 번째 분사시기가 너무 진각되면 연소가 느려지면서 연소온도가 낮아져 연소성능이 저하되고 HC, CO가 증가한다. 대략 -60°ATDC 의 분사시기가 연소성능, 배출가스 및 최대압력상승률을 고려하였을 때 가장 최적의 분사시기라고 판단된다. 이단 분사 시 두 번째 분사시기를 변경하였을 때 연소성능 및 배출가스, 최대압력상승률 등을 고려하면 대략 -30°ATDC 부근에서 최적인 것으로 판단된다. 이단 분사 시 분사량 비율은 첫 번째 분사량을 60% 정도로 하였을 때 최적의 결과를 얻었다. 마지막으로 단일 분사보다는 이단 분사한 경우 연소성능 및 배출가스 부분에서 더 효과적인 것으로 판단된다.

가솔린 균일 예혼합 압축착화 엔진의 착화시점 검출 (Start of Combustion Detection Method for Gasoline Homogeneous Charge Compression Ignition Engine)

  • 최두원;이민광;선우명호
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.151-158
    • /
    • 2008
  • Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion is a new combustion concept. Unlike the conventional internal combustion engine, the premixed fuel mixture with high residual gas rate is auto-ignited and burned without flame propagation. There are several operating factors which affect HCCI combustion such as start of combustion (SOC), residual gas fraction, engine rpm, etc. Among these factors SOC is a critical factor in the combustion because it affects exhaust gas emissions, engine power, fuel economy and combustion characteristics. Therefore SOC of gasoline HCCI should be controlled precisely, and SOC detection should be preceded SOC control. This paper presents a control oriented SOC detection method using 50 percent normalized difference pressure. Normalized difference pressure is defined as the normalized value of difference pressure and difference pressure is difference between the in-cylinder firing pressure and the motoring pressure. These methods were verified through the HCCI combustion experiments. The SOC detection method using difference pressure provides a fast and precise SOC detection.