• Title/Summary/Keyword: Ignition Test

Search Result 468, Processing Time 0.025 seconds

A Study on Combustion and exhaust Emission Characteristics with Air Charge in Compression Ignition Diesel Engine (압축착화 디젤기관의 흡기조성에 따른 연소 및 배기배출물 특성에 대한 연구)

  • Kim, Gi-Bok;Kim, Chi-Won;Yoon, Chang-Sik;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2015
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in CI diesel engine. In this study, it is designed and used the test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and emission as operating parameters.

A Study on the Design and Performance of a Green Propellant Engine (친환경 추진제를 이용한 200N급 엔진의 설계 및 성능에 관한 연구)

  • Lee, Yang-Suk;Jun, Jun-Su;Hwang, Oh-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1180-1187
    • /
    • 2010
  • In the last decade, hydrogen peroxide has received renewed interest as a green propellant which is non-toxic, environmentally clean and relatively easy to handle. This study was performed to acquire the design technique and combustion performance of a 200N bi-propellant engine using hydrogen peroxide and kerosene. The engine which used a catalytic ignition method was designed and cold flow tests were carried out to investigate atomization characteristics. Combustion tests including a pulse mode operation were performed to investigate the combustion performance on various O/F ratios. The results showed that the combustion efficiency and the repeatability of the engine performance were enough to use as an essential database for the development of a high performance engine.

Numerical Modeling on the Dual Propellant Combustion in a Closed Vessel (밀폐용기 내 입자 혼합물(ZPP와 THPP)의 연소에 대한 수치해석적 모델링 및 해석)

  • Han, Doo-hee;Sung, Hong-gye;Kwon, Mi-ra;Ahn, Gil-hwan;Kim, Jun-hyung;Ryu, Byung-tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.451-455
    • /
    • 2017
  • The reactive Eulerian-Lagrangian code is utilized to simulate combustion of ZPP/THPP in a closed vessel. In the paper, ignition delay of THPP is mainly studied since ZPP and THPP are isolated by a boron nitride wall. Only a numerical case study is conducted as experimental observation is inaccessible. Results showed THPP ignition delay affects initial shock strength thus not only the first peak become weak, but also the frequency of a pressure oscillation is slowed.

  • PDF

Oxidation Behaviors of STS Series in Oxidizer-Rich Environment Using H2O2/Catalytic Reaction (H2O2/촉매 반응을 이용한 산화제 과잉 환경에서의 STS 계열 산화 거동)

  • Shin, Donghae;Choi, Jiseon;Shin, Minku;Ko, Youngsung;Kim, Seonjin;Han, Yeongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.923-927
    • /
    • 2017
  • Metal exposed to high temperature/high pressure/oxidizer-rich environment may cause rapid oxidation(ignition and combustion). Therefore, this study was performed for the selection of metal appropriate for high temperature/high pressure/oxidizer-rich environment. In order to make the high temperature, high pressure and oxidizer-rich environment, the test facility utilizing the catalytic reaction of hydrogen peroxide was constructed and the metal oxidation and ignition of the STS series metals were evaluated. The result showed that the change of the selected material (discoloration) and the surface roughness were observed, but the change in the weight and thickness of the specimen was not significant.

  • PDF

Oxidation Behavior of STS Series at High -Temperature/Stagnation/Oxidizer-Rich Environment (고온/정체/산화제 과잉 환경에서 STS 계열의 산화 거동)

  • Shin, Donghae;Lee, Seongmin;Lee, Hijune;Ko, Youngsung;Kim, Seonjin;So, Younseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.843-848
    • /
    • 2017
  • Metal exposed to high temperature/high pressure/oxidizer-rich environment may cause rapid oxidation(ignition and combustion). In this study, a DC power supply test system that controls the temperature of specimen by supplying power to the specimen was constructed and after simulating the high temperature/stagnation/oxidizer-rich environment, the metal oxidation and ignition of STS series metal materials were evaluated. As a result, we was confirmed that the deformation (discoloration) of the selected material, the change in the surface roughness and the peeling of the metal surface were observed, and that the weight and the specimen thickness were changed. The most oxidized specimen was STS 304 and the less oxidized specimen was XM-19.

  • PDF

Development of a Low Frequency Operating Electronic Ballast for Fish Attracting Lamps (저주파 구동형 집어등용 전자식 안정기 개발)

  • Kim, Il-Kwon;Song, Jae-Yong;Park, Dae-Won;Seo, Hwang-Dong;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.273-276
    • /
    • 2005
  • This paper presents an electronic ballast using a step down converter, a low frequency inverter for high pressure discharge lamp. The proposed ballast is composed of a full-wave rectifier, a step down converter operated as a current source with power regulation and a low frequency inverter with ignition circuit. The ignition circuit generates high voltage pulse of 1${\sim}$2[kV] peak, 130[Hz]. Moreover, it is able to reignite at regular intervals by protective circuit. As experimental results on the test, lamp voltage, current and consumption power are measured 132.5[V], 7.6[A] and 1,005[W], respectively. It was confirmed that the designed ballast operate the lamp with a constant power.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

Development of the Dual Thrust Rocket Motor with Two Kinds Propellant (이종추진제를 적용한 이중추력 추진기관 개발)

  • Kim, Kyungmoo;Kim, Jeongeun;Lim, Jaeil;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.58-67
    • /
    • 2021
  • This paper describes the development for the dual thrust rocket motor with two types of propellants with different combustion characteristics. We developed the composition of two kinds of propellant to be applied to a rocket motor, and improved a propellant charging process in a free grain type to improve the adhesion method and the problems of adhesion between different propellants. In addition, to meet the ignition phenomenon as a small rocket motor, the ignition delay was improved by applying a nozzle plug developed in a high density foam. The propulsion rocket motor reflecting this design and the improved manufacturing process was evaluated through a ground performance test.

A Study on the Characteristics of Combustion for Car Interior Materials (자동차 내장재의 연소 특성에 관한 연구)

  • Kim, Young-Tak;Kim, Hae-Rim;Park, Young-Ju;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.450-455
    • /
    • 2008
  • We have carried out the test using the cone calorimeter and the smoke density chamber to evaluate the characteristics of the combustion for the car interior materials passed horizontal burning test. We have analysed many parameters related to fire hazard. These parameters are the ignition time, the heat release rate, the maximum average rate of heat emission, the flashover propensity and specific optical density. There was a significant difference in HRR and optical smoke density. The HRR was $185{\sim}446kW/m^2$ and optical smoke density was $119{\sim}1207$. Only horizontal burning test was performed to evaluate the fire hazard for the car interior materials.

  • PDF

Investigation of Supersonic Combustion within the Model Scramjet Engine by Shock Tunnel Test (충격파 터널시험을 통한 스크램제트 엔진의 초음속 연소현상연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.307-311
    • /
    • 2008
  • Ground test of model Scramjet engine was performed with T4 free-piston shock tunnel at University of Queensland, Australia. Test condition of free stream was Mach 7.6 at 31 km altitude. With this condition, variation effects of fuel equivalence ratio, cavity, cowl setting were investigated. In the results, supersonic combustion or thermal choking was observed depending on the amount of fuel. Cavity and W-shape cowl showed early ignition and enhanced mixing respectively.

  • PDF