• Title/Summary/Keyword: Ignition Process

Search Result 378, Processing Time 0.022 seconds

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

Combustion Enhancemen of Premixed Mixtures Using Laser-Induced Cavity Ignition (레이저 유도 공동 점화방식을 이용한 예혼합기 연소 특성 향상)

  • 모하메드하산;고영성;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, a new type of laser-induced ignition using a conical cavity has been developed to utilize all the available incident laser energy. In the method, it is possibile to ignite combustible methane/air mixtures by directing a laser beam of a constant small diameter into a small conical cavity, without focusing the laser beam. Shadow graphs for the early stage of combustion process show that a hot gas jet is ejected from the cavity, especially with lean mixture. After a very show time, the hot gas jet finishes issuing and the flame behavior is quite similar to flame propagation initiated by a conventional spark ignition. The combustion process using the new method exhibits more rapid pressure increase and a higher maximum pressure rise than that of the center ignition using laser-induced spark, with significant decrease in the combustion time. Also, the new ignition method is numerically modeled to simulate the flame kernel development and subsequent combustion process using the KIVA-IIcode. The calculated results show satisfactory agreement with experimental results.

  • PDF

Numerical Simulation of Auto-ignition Process of Diesel Sprays Using Detailed Chemistry and Representative Flamelet Model (상세 화학 반응 모델 및 RIF 모델을 이용한 디젤 분무의 자발화 과정 해석)

  • Yu, Y.W.;Kim, S.K.;Kim, Y.M.;Soh, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2000
  • The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multi-RIF is used. The effect of the number of RIF on ignition delay is discussed in detail. Numerical results indicate that the present RIF approach successfully predicts the ignition delay time as well as the essential features of a spray auto-ignition process.

  • PDF

The Problems and Improvements of Process to Predict Fire Risk of a Building in Performance Based Design (성능위주설계에서 화재위험성 예측 과정의 문제점 및 개선방안)

  • Lee, Se-Myeoung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • Performance based design(PBD) is the method to make a fire safety design against them after predicting the factors of fire risk in a building. Therefore, predicting fire risk in a building is very important process in PBD. For predicting fire risk of a building, an engineer of PBD must consider various factors such as ignition location, ignition point, ignition source, first ignited item, second ignited item, flash over, the state of door and fire suppression system. But, it is difficult to trust fire safety capacity of the design because the process in Korea' PBD is unprofessional and unreasonable. This paper had surveyed some cases of PBD that had been made in Korea to find the problems of the process to predict fire risk. And it have proposed the improvements of process to predict fire risk of a building.

Numerical Analysis of Ignition and Flame Propagation in the Air/Fuel Spray Mixture (공기/연료분무 혼합기의 점화 및 화염전파 해석)

  • ;;Kim, Sung-Jun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3352-3359
    • /
    • 1995
  • An Eulerian-Lagrangian method is employed to simulate the ignition process and the flame propagation through the air/fuel spray mixture in a closed constant-volume combustor. The spray mixture is ignited by providing a hot wall at the end of the combustor or by firing the electric spark. The investigated parameters involve the initial droplet size, overall equivalence ratio, initial fuel vapor concentration, distance between the hot wall and the nearest droplet, and the ignition energy. Numerical results clearly show the existence of the optimum spray condition for minimizing the ignition energy and the ignition delay time as well as the critical dependence of ignition upon the distance of the heat source to the nearest droplet.

Analysis of Group Ignition of Pulverized Coal Particles (미분탄의 집단점화 해석)

  • Suh, K.K.;Kim, H.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF

A Study on the Minimum Ignition Energy Measurements for Liquid Jet A1 Fuel under at Elevated Oxygen Concentrations and Reduced Atmospheric Pressures (고산소-저기압 환경에서 JET A1 액체연료의 최소점화에너지 측정에 관한 연구)

  • Kwon, Haeng-Jun;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.88-93
    • /
    • 2017
  • In the present study, the ignition characteristics of liquid fuel were experimentally investigated. To quantify its ignitability as ignition characteristics, the minimum ignition energy (MIE) of liquid fuel was defined and measured under at the elevated oxygen concentrations and reduced atmospheric pressures which that are the most probable conditions likely to be encountered during operation of the space launch vehicle's operating process. The experimental results demonstrate that the measured MIE decreased with the increasing the oxygen concentration at given atmospheric pressures. When the atmospheric pressure was reduced from 1 atm to 0.2 atm at a fixed oxygen concentration, the measured MIE was found to vary with $P^{-2}$ but the lowest MIE was observed at 0.8 atm.

Ignition resistance of CaO added Mg-3Al, Mg-6Al and Mg-9Al Eco-Mg alloys (CaO가 첨가된 Mg-3Al, Mg-6Al 및 Mg-9Al Eco-Mg 합금의 발화 저항성 평가)

  • Lee, Jin-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.60-65
    • /
    • 2011
  • Molten magnesium alloys and magnesium products are easily oxidized and burned when they are exposed to high temperature for manufacturing process and by accident. In order to solve these problems, CaO addition in magnesium alloys has been developed. The ignition resistance of CaO added Mg-3Al, Mg-6Al, and Mg-9Al Eco-Mg alloys were investigated in comparison with those of magnesium alloys without CaO. The ignition resistance was examined by three methods : DTA, furnace chip ignition test, and torch ignition test. DTA was carried out for obtaining quantitative ignition temperature data with respect to specimen geometry and test environment; the furnace ignition test for burr and chip ignition temperature data; and the torch test for ignition temperature data for manufactured products. The ignition resistance of magnesium alloys under all conditions greatly increased by CaO addition.

IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE BY CONSTANT HEAT FLUX

  • Chae, J.O.;Mokhin, G.N.;Moon, J.I.;Shmelev, V.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.11-30
    • /
    • 1995
  • The ignition characteristics of a reactive solid with rough surface by constant heat flux were studied. The geometry of surface was represented by a set of identical protrusions having a shape of wedge based on the block of reactive solid. Several regimes of ignition were found, depending on the ratio of the protrusion length and the depth of the heated layer, formed in course of ignition process: 1) when the substance is ignited as the massive block, and the effect of roughness is not pronounced; 2) when ignited are the individual protrusions; and 3) in the intermediate region between the first two. Critical ignition conditions: ignition time and ignition criterion, are determined for the three regimes. The results are compared with the results for the one-dimensional ignition of the semi-infinite body. It is shown, that the effect of geometry on ignition results in the considerable reduction of ignition delay, and the amount of energy required for the successful ignition is less compared to the one- dimensional case.

  • PDF

Spontaneous Ignition of High Pressure Hydrogen Gas released into Tube due to the Burst Pressure Variation (파열 압력에 따른 튜브 내 고압 수소 누출에 의한 자발점화 현상)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.93-96
    • /
    • 2012
  • The spontaneous ignition mechanism of high pressure hydrogen gas released into tube is well-deduced from previous studies. However, those results have a limit because the studies have been conducted at low burst pressure of about 10 MPa. In this study, the process or ignition feature are investigated with higher burst pressure of up to 30 MPa through numerical analysis. The results show that the trend of ignition became to be different with a burst pressure. While two reaction regions is important to initiate the ignition when burst pressure is about 10 MPa, the reaction of the core region does not play a role in ignition inside the tube when a burst pressure is above 20 MPa.

  • PDF