• Title/Summary/Keyword: Ignition Performance

Search Result 494, Processing Time 0.034 seconds

Electronic Control Unit Based Control of Racing Car to Enhance the Acceleration Performance (Racing Car ECU 의 제어에 의한 가속성능 향상에 관한 연구)

  • Hwang, Ui-Jun;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.58-63
    • /
    • 2020
  • The fuel injection amount and timing along with the ignition timing for the gasoline engine of a racing car were adjusted using an electronic control unit (ECU), and the engine performance was evaluated through an acceleration test. The fuel map for the fuel injection amount and ignition map for the ignition timing were derived. Using the transient throttle control, the air-fuel ratio could be maintained at a constant value even in the case of a sudden throttle operation. In the flat shift, ignition blocking was more effective than fuel blocking. In a 75 m acceleration test, the required duration without and with ECU control was 4.47 s and 3.99 s, respectively. Notably, the acceleration could be improved by approximately 10.7% when the ECU control was implemented.

Test Method for Engine Performance in Compression Ignition Engine (압축 착화기관의 엔진 성능 시험방법)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.295-299
    • /
    • 2002
  • Specific fuel consumption or specific power output characteristics of an internal combustion engine are likely, in conventional applications, the most important operating criteria. In this work, the test method for the engine performance was introduced in a compression ignition(diesel) engine.

  • PDF

An Experimental Study on Performance Characteristics of a Hydrogen Fuelled Spark Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.81-89
    • /
    • 2014
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.76 to 1.5, and the ignition timing was controlled to be at minimum spark advance for best torque (MBT).

The Problems and Improvements of Process to Predict Fire Risk of a Building in Performance Based Design (성능위주설계에서 화재위험성 예측 과정의 문제점 및 개선방안)

  • Lee, Se-Myeoung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • Performance based design(PBD) is the method to make a fire safety design against them after predicting the factors of fire risk in a building. Therefore, predicting fire risk in a building is very important process in PBD. For predicting fire risk of a building, an engineer of PBD must consider various factors such as ignition location, ignition point, ignition source, first ignited item, second ignited item, flash over, the state of door and fire suppression system. But, it is difficult to trust fire safety capacity of the design because the process in Korea' PBD is unprofessional and unreasonable. This paper had surveyed some cases of PBD that had been made in Korea to find the problems of the process to predict fire risk. And it have proposed the improvements of process to predict fire risk of a building.

EXPERIMENTAL INVESTIGATION ON THE EFFECT OF MAGNETIC FLUX TO REDUCE EMISSIONS AND IMPROVE COMBUSTION PERFORMANCE IN A TWO-STROKE, CATALYTIC-COATED, SPARK-IGNITION ENGINE

  • Govindasamy, P.;Dhandapani, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.533-542
    • /
    • 2007
  • The two stroke spark ignition engine is the greatest contributor of the total vehicular pollution in a country like India. It is therefore an item that requires great attention in order to reduce fuel consumption and its concomitant pollution. The use of strong magnetic charge in the fuel line gives a complete and clean burn so that power is increased while operating expenses are reduced. The magnetic flux on the fuel line dramatically reduces harmful exhaust emissions while increasing mileage, thereby saving money and improving engine performance. It increases combustion efficiency and provides higher-octane performance. The experimental results show that the magnetic flux on fuel reduces the carbon monoxide emission up to 13% in a base engine, 23% in a copper-coated engine and 29% in a zirconia-coated engine.

An Experimental Study on Engine Performance of LPG/Gasoline Bi-Fuel (LPG/가솔린 Bi-Fuel 엔진성능에 관한 실험적 고찰)

  • Jun, Bong-Jun;Park, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1433-1438
    • /
    • 2009
  • The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000) and the ignition timing advance($5^{\circ}$,$10^{\circ}$,$15^{\circ}$,$20^{\circ}$) As the result, between 1500rpm and 2000rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$was smaller value. Also, the heat release rate at 1500rpm was increased but it was lower around $20^{\circ}$at 2000rpm.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

Study on Properties of Interior Ballistics According to Ignition-Gas Injections (점화제 주입에 따른 강내탄도 성능해석)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Lee, Sang-Bok;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the ignition-gas injections has been investigated. The ignition gas has been assumed to be injected into the chamber with 3 cases. As the results of analysis, when the ignition-gas has been injected into all chamber area, the pressure distributions of the chamber of the interior ballistics have been uniform and the differential pressure has been stable. The ignition-gas has been injected into the partial area of the chamber, however, the pressure distributions and the differential pressure have been unstable. The case using the longer ignition injector, therefore, seems to be more suitable to improve the stability of the interior ballistics.

A Study on the Emissions of Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관의 배출가스특성에 관한 연구)

  • Han, Sung-Bin;Choi, Gyeung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.