• Title/Summary/Keyword: Ignition Performance

Search Result 493, Processing Time 0.021 seconds

A Study on Fire Performance Evaluation of EIFS on Anti-Flaming Finish by Cone Calorimeter Test (콘칼로리미터에 의한 외단열시스템의 방염 화재성능평가를 위한 연구)

  • Min, Se-Hong;Sun, Ju-Seok;Kim, Sang-Chul;Choi, Yong-Mook;Lee, Seok-Ki
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.106-111
    • /
    • 2012
  • In this study, EIFS (Exterior insulation finish system) of exterior cladding was applied Cone calorimeter test to confirm the effect of flame retardant. As a results, the initial ignition points in accordance with the coated form and concentration of the flame retardant was delayed. But flame resistant treatment of EIFS cladding to control the fire will not affect confirmed that. In addition, EIFS that uses high-density and low-density due to difference in the density of the impact of the fire was no difference. The exterior of the ignition experiment occurred before and after 40 seconds, heat release rate to 100 seconds appears to occur about 90 % compared with the other exterior wall materials, the initial fire spread very fast was confirmed. EIFS cladding in order to prevent the spread of fire in the application of EIFS legally use is limited by the use of the building. And flame spread can be prevented, such as a vertical outer wall compartment measures are urgently needed.

A Study on the Heat Hazard Assessment of Building Wood (건축용 목재의 열 유해성 평가에 대한 연구)

  • Woo, Tae-Young;Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.6-14
    • /
    • 2018
  • This study was carried out with respect to the heat release rate (HRR) properties of building wood. Heat release characteristics were measured using a cone calorimeter (ISO 5660-1) with four kinds of wood. The time to ignition measured after the combustion in $25kW/m^2$ external heat flux was 35 to 55 s. Time to ignition of both lauan and red pine was marked with the most delayed value in each of 54 s, 55 s. The maximum heat release rate ($HRR_{peak}$) was $156.87{\sim}235.1kW/m^2$, and the risk of early fire was highest in spruce. Total heat release of red pine was obtained in the highest value with $114.2MJ/m^2$. The mean effective heat of combustion of Japanese cedar was 19.1 MJ/kg and the highest among the samples. Fire risk of wood by FPI was orderly increased from lauan ($0.2468s{\cdot}m^2/kW$), red pine ($0.2339s{\cdot}m^2/kW$), spruce ($0.2308s{\cdot}m^2/kW$) to Japanese cedar ($0.2231s{\cdot}m^2/kW$). Fire risk of wood by FGI get increased from lauan ($0.5088kW/m^2{\cdot}s$), red pine ($0.5111kW/m^2{\cdot}s$), Japanese cedar ($2.8522kW/m^2{\cdot}s$) to spruce ($3.0662kW/m^2{\cdot}s$). Therefore, the risk of fire on the heat release characteristics of woods were found that spruce and Japanese cedar showed the high value compared with the other specimens.

The changes of Students through Technological problem solving Hands-on Activity in Technology Education of Middle School (중학교 기술교육에서 기술적 문제해결 체험활동을 통해 나타나는 학생들의 변화)

  • Kim, Ji-Sook;Yi, Sang-Bong
    • 대한공업교육학회지
    • /
    • v.40 no.2
    • /
    • pp.175-195
    • /
    • 2015
  • This study is aimed at exploring the educational meaning of cooperative hands-on activity in the technology subject from the perspective of a student who is an education consumer. For this purpose, this study selected 12 first year student of a middle school located at G City of Gyeonggi-do Province as research participants through purposeful sampling, and conducted an in-depth interview and group discussion based on stimulated recall questionary techniques. This study utilized area analysis, classification analysis and component analysis as a data analysis method, and secured the verity of the research through the examination between research participants and triangulation. As a result of this research work, it was found that the cooperative hands-on class in the technology subject had the meaning of 'Space between a burden and excitement about the technical making', 'Clue and ignition point of technological problem solving', and 'Self-discovery through Technical capability'. To be more concrete, 'Space between a burden and excitement about the technical making' means that students, whose usual school record is excellent, felt great psychological burdens of performance assessment, but their pre-experience and interest in 'Making' induced them to feel exhilaration of hands-on activity. 'Clue and ignition point of technological problem solving' means that students get to make much of the understanding & formation of the relationship with teammates in the process of resolving an unfamiliar hands-on activity task and to have the continuous problem-solving ability. 'Self-discovery through Technical capability' means that students get to realize the importance of learning experience of one's own making through hands-on activity learning, which could be the opportunity to meet the operant demands of the inner side. This study hopes that such results could be utilized as the basic data needed for designing the hands-on activity education in the technology subject more meaningfully and systematically for the time to come.

The Control System of Wood Pellet Boiler Based on Home Networks (홈 네트워크 기반의 펠릿 활용 난방 보일러 제어시스템)

  • Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This paper presents the implementation of a control system of pellet boiler using wood pellet as carbon neutral material. The system also has the additional features to provide remote controlling and monitoring based on home networking technology through either public switched telephone networks or mobile communication networks. It consists of three kinds of sub-modules; a main controller provides basic and additional features such as a setting of temperature, a supplying of wood pellet, a controlling of ignition and fire-power, and a removing of soot. The second is temperature controller of individual rooms which is connected to the main controller through RS-485 links. And interface modules with PSTN and mobile networks can support remote controlling and monitoring the functions. The test results under the heating area of $172m^2$ show a thermal efficiency of 93.6%, a heating power of 20,640kcal/hr, and a fuel consumption of 5.54kg/hr. These results are superior to those of the conventional pellet boilers. In order to obtain the such high performance, we newly applied a 3-step ignition flow, a flame detection by $C_dS$ sensor, and a fire-power control by fine controlling of shutter to our pellet boiler.

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.

Effects of Spark Plug Changes on Performance of an SI Engine Fueled by Gaseous Fuel (스파크플러그 변화에 따른 가스 엔진 성능 변화)

  • Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2013
  • Renewable gas fuels such as biogas and landfill gas are obtained from the biodegradable organic wastes so that they inherently have carbon-neutral nature which can respond global warming. Therefore, attentions are paid to use this renewable gases as a main fuel for internal combustion engines. However, the composition of the fuel varies by its origin or conversion process, it is necessary to make stable combustion and accomplish high efficiency when used in power generating spark ignition (SI) engines. In this study, efforts have been made to investigate the effect of the composition of renewable gas fuel on the engine performance and exhaust emissions. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce harmful emissions.

Development of Walk-down Performance Procedures for Fire Modeling of Nuclear Power Plants based on Deterministic Fire Protection Requirements (결정론적 화재방호요건을 기반으로 한 원자력발전소 화재모델링 현장실사 수행절차 개발)

  • Moon, Jongseol;Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.43-52
    • /
    • 2019
  • A walk-down procedure for fire modeling of nuclear power plants, based on deterministic fire protection requirements, was developed. The walk-down procedure includes checking the locations of safety shutdown equipment and cables that are not correctly indicated on drawings and identifying the existence and location of combustibles and ignition sources. In order to verify the performance of the walk-down procedure developed in this study, a sample of important equipment and cables were selected for hypothetical multiple spurious operation (MSO) scenarios. In addition, the hypothetical fire modeling scenarios were derived from the selected safe shutdown equipment and cables and an actual walk-down was conducted. The plant information collected through the walk-down was compared to the information obtained from the drawings, so that the collected information may be used as input values for the fire modeling.

The Performance and Emission Characteristics on Operating Condition for the SI Engine Fuel with Gasoline-Ethanol and Hydrogen Enriched Gas (에탄올 및 수소농후가스 혼합연료 기관의 운전영역에 따른 성능 및 배기 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Oh, Seung-Mook;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The results obtained from experiments have shown that specific fuel consumption has increased by increasing ethanol amount in the blend whereas decreased by the use of hydrogen-enriched gas. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

A Study on Diesel Engine Performance with Ar and $CO_2$ Addition (Ar과 $CO_2$ 첨가에 따른 디젤기관의 성능에 관한 연구)

  • 정영식;이상만;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.93-99
    • /
    • 1997
  • The re quest to develop the engines that are able to run without air or with very little oxygen condition is raised with the interest of ocean science or the mines. This research had already be gun before the world war II, but had been stagnant owing to the appearance of nuclear power. Recycle diesel engines have ability to run under the above mentioned condition the recycle diesel engine recirculates exhaust gases into intake port and consumes additional oxygen supplied by oxygen tank. Carbon dioxide is controlled by the absorber. The combustion and emission characteristics of recycle diesel engines are quite different with conventional one because the working fluids of recycle diesel engines consist of Ar, $CO_2$ and $O_2$ as well as $N_2$. Recycle diesel engine is therefore different with general diesel engine from the viewpoint of intake air composition. It is required to investigate the effect of intake composition in the combustion and emission to know recycle diesel engine. In this study, NOx concentration, smoke and cylinder pressure are measured with the variation of Ar and $CO_2$ Reduces show that the addition of Ar reduces NOx but increases smoke. Otherwise $CO_2$ reduces smoke and NOX simultaneously. Only $CO_2$ increases the ignition delay and both gases increase fuel consumption Ar addition is superior to $CO_2$ addition for the performance of recycle diesel engine system but $CO_2$ has the avantage with respect to emission.

  • PDF