현재까지 수소는 주로 천연가스의 연료 개질에 의해 발생된 합성가스를 이용해 생산된다. 합성가스 내의 수소 수율을 높이기 위해선 추가적인 공정이 필요하다. 하지만, 수소의 수율 향상을 위한 공정에는 별도의 에너지원과 경제적 비용이 수반된다. 그러므로 보다 효율적으로 합성가스를 활용하기 위해 그 자체로 혼합물로 이용하는 방법에 관한 관련 연구들이 이루어지고 있다. 본 연구에서는 30kW급 발전용 스파크 점화 가스엔진에서 메탄/합성가스 혼합물이 엔진의 주요 성능에 미치는 영향을 조사하였다. 그 결과 메탄/합성가스 혼합물에 의해서 최대 실린더 내부 압력과 그 때의 크랭크 각도와 같은 엔진 내 연소 현상은 개선되는 것으로 나타났다. 이를 통해 메탄-합성가스 혼합물의 연료 전환 효율은 메탄-수소 혼합물의 약 98% 수준으로 향상시킬 수 있고 질소산화물 배출량은 메탄-수소 혼합물의 약 12%만큼 감소시킬 수 있다.
Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.
This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.
Even though the fire performance-based design concept has been introduced for various structures and buildings, which have their own specific fire performance level, the uncertainties of input parameters always exist and, then, could reduce significantly the reliability of the fire modeling. Sensitivity analysis was performed with three limited input parameters, HRRPUA, type of combustible materials, and mesh size, which are significantly important for fire modeling. The output variables are limited to the maximum HRR, the time reaching the reference temperature($60^{\circ}C$), and that to reach limited visible distance(5 m). In addition, correlation coefficient analysis was attempted to analyze qualitatively and quantitatively the degree of relation between input and output variables above. Finally, the relationship among the three variables is also analyzed by the principal component analysis (PCA) to systematically analyze the input data bias. Sensitivity analysis showed that the type of combustible materials is more sensitive to maximum HRR than the ignition source and mesh size. However, the heat release parameter of the ignition source(HRR) is shown to be much more sensitive than the combustible material types and mesh size to both time to reach the reference temperature and that to reach the critical visible distance. Since the derived results can not exclude the possibility that there is a dependency on the fire model applied in this study, it is necessary to generalize and standardize the results of this study for the fire models such as various buildings and structures.
Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.
THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.
Biodiesel is technically competitive with or offers technical advantages over conventional petroleum diesel fuel. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. In this study, to investigate the effect of fuel injection timing on the characteristics of performance with DBF in DI diesel engine. The engine was operated at five different fuel injection timings from BTDC $6^{\circ}$ to $14^{\circ}$ at $2^{\circ}$ intervals and four loads at engine speed of 1800rpm. As a result of experiments in a test engine, maximum cylinder pressure is increased with leading fuel injection timing. Specific fuel oil consumption is indicated the least value at BTDC $14^{\circ}$ of fuel injection timing.
The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.
Engine torque, specific fuel consumption and MBT spark advance of a domestic automotive engine fueled with methanal-gasoline blends or straight methanal were studied under steady state condition and compared to those obtained with gasoline. The effects of adding methanal to gasoline on engine performance were studied with or without any carburetor modification. At first, the engine was operated without any modification. Next, the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally, the diameters of metering orifices in carburetor were modified to give the same excess air factor for 15% mixture of methanal in gasoline by volume as for gasoline with standard metering orifices in carburetor. The effects of adding methanal to gasoline on engine torque, specific energy consumption and MBT spark advance can be explained on the basis of change in stoichiometry caused by the addition of methanal to gasoline.
The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.