• Title/Summary/Keyword: Ignition Performance

Search Result 494, Processing Time 0.035 seconds

Fabrication Method and Performance Evaluation of Micro Igniter for MEMS Thruster (MEMS 추력기를 위한 마이크로 점화기의 제작 방법 및 성능 평가)

  • Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Micro igniter on the glass membrane for MEMS thruster was developed. The stability of the micro igniter by using a glass membrane with a thickness of tens of microns was improved. The micro igniter was fabricated by anisotropic wet etching of photosensitive glass and deposition of Pt/Ti for electric heat coil. The solid propellant was loaded into the propellant chamber without an especial technique due to the high structural stability of the glass membrane. Ignition tests were performed successfully. The minimum ignition delay was 27.5 ms with an ignition energy of 19.3 mJ.

Ignition and Extinction Characteristics of a Low Thrust Combustion Chamber using Green Propellant according to Sequence of the Combustion Test (친환경 추진제를 사용하는 저추력 액체로켓엔진의 연소시험 시퀀스에 따른 점화 및 소염 특성)

  • Kim, Young-Mun;Jeon, Jun-Su;Choi, Yu-Ri;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.130-133
    • /
    • 2009
  • The sequence of the propellant supply is very important for the reliable and safe operation of a LRE combustion test. So combustion performance tests were performed to find an optimum test sequence by changing supply time of propellants and purge gas in the moment of ignition and extinction. The liquid rocket engine consisted of a catalytic ignitor and six swirl-coaxial injectors which used hydrogen peroxide and kerosene. Conclusively, an optimum sequence was found for stable combustion in the moment of ignition and extinction.

  • PDF

Design of Hydrogen Peroxide/Kerosene Ignitor and Ignition Characteristic according to Operation Condition (친환경 추진제를 사용하는 액체로켓엔진 점화기의 설계 및 운용 조건이 점화 특성에 미치는 영향)

  • Hwang, Oh-Sik;Kim, Tae-Woan;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.74-77
    • /
    • 2009
  • Ignition performance tests were performed to develop a catalytic ignitor which used hydrogen peroxide and kerosene. Ignition characteristics were investigated by exit area of the catalytic bed, shape of kerosene injector and lead time of purge gas. The results showed that exit area of catalytic bed must be enough for non chocking condition and kerosene must be sprayed with swirl in the middle of catalytic bed. Also in case without preheating of catalytic bed, hydrogen peroxide must be leaded by 3sec, and purge gas must be supplied simultaneously or lately with kerosene.

  • PDF

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models (열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.26-41
    • /
    • 2021
  • Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.

Evaluation of the Aging Effects on the Performance of the Pyrotechnic Igniter (파이로 테크닉 점화기의 노화 성능 평가)

  • 장승교;류병태
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.91-102
    • /
    • 1997
  • In order to evaluate the effects of aging on the ignition performance, pyrotechnic igniters were separated from twelve-year-old, fifteen-year-old, and sixteen-year-old live rocket motors. The characteristic values of the ignition material were measured, and the firing tests of the igniters were performed. The moisture content, the outer dimension, the crush strength, the thermal decomposition characteristics, and the heat of formation the B/$KNO_3$ ignition pellet were measured. The crush strength was increased and the heat of formation was reduced as aged, but no change was detected for other characteristic values. The burning test results of the igniter pellet in the closed bomb and the inert motor showed that the burning rate of the ignition pellet was increased by 10%, and the integration of pressure $P_t$ of the p-t curve was reduced by 15% for aged samples. It was inferred that the burning rate was increased as the crack was appeared in the pellet and $P_t$ could be proportionally decreased with the heat of explosion.

  • PDF

Experimental Ignition Delay Assessment of H2O2 Based Low Toxic Hypergolic Propellants with Variation of Reactive Additive Concentration (반응성 첨가제 농도에 따른 과산화수소 기반 저독성 접촉점화성 추진제의 점화지연 시험평가)

  • Rang, Seongmin;Kim, Kyu-Seop;Kwon, Sejin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.24-31
    • /
    • 2020
  • A study on the H2O2 based low toxic hypergolic propellant was conducted. The fuel candidates were chosen as a mixture of Amine solvent and reactive additive. The analytical performance was calculated via the NASA CEA code and 96% Isp of the NTO/UDMH was confirmed. The ignition delay measurement with drop test was performed and all candidates showed less than 10 ms in the best performance cases. Based on these results, the feasibility of high response H2O2 based low toxic hypergolic propellant was confirmed.

A Study on the Design and Performance of a Green Propellant Engine (친환경 추진제를 이용한 200N급 엔진의 설계 및 성능에 관한 연구)

  • Lee, Yang-Suk;Jun, Jun-Su;Hwang, Oh-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1180-1187
    • /
    • 2010
  • In the last decade, hydrogen peroxide has received renewed interest as a green propellant which is non-toxic, environmentally clean and relatively easy to handle. This study was performed to acquire the design technique and combustion performance of a 200N bi-propellant engine using hydrogen peroxide and kerosene. The engine which used a catalytic ignition method was designed and cold flow tests were carried out to investigate atomization characteristics. Combustion tests including a pulse mode operation were performed to investigate the combustion performance on various O/F ratios. The results showed that the combustion efficiency and the repeatability of the engine performance were enough to use as an essential database for the development of a high performance engine.

The Impact of Ethanol Contents on Combustion Performance and Nano-particle Emission Characteristics from Spark Ignition Direct Injection (SIDI) Engine (에탄올 함량비가 SIDI 엔진의 연소성능과 입자상물질 배출특성에 미치는 영향에 대한 연구)

  • Cho, Jaeho;Myung, Cha-Lee;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.343-344
    • /
    • 2014
  • Ethanol as fuel of Spark Ignition Direct Injection (SIDI) engine has become a feasible alternative due to its better anti-knock characteristics and lower nano-particle emission level. There are a number of studies on the emission characteristics from SIDI engine fuelled with various ethanol contents. In general, increase of ethanol contents leaded to decrease of nano-particle discharge, but the other researches showed reversed result at a singular range of ethanol contents. This study focused on the engine combustion performance and nano-particle emission characteristics of SIDI engine fuelled with intermediate ethanol contents.

  • PDF

A Performance Analysis of a Spark Ignition Engine Using Gasoline, Methanol and M90 by the Thermodynamic Second Law (가솔린, 메탄올, M90 연료를 사용한 전기점화기관에서의 열역학 제 2법칙적 성능해석)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.22-28
    • /
    • 2009
  • 열역학 제 2법칙의 관점의 열역학적 가용에너지인 엑서지 해석법을 적용하여 가솔린, 메탄올, M90 연료를 사용한 전기점화 기관의 성능해석을 수행하였다. 열역학적 사이클 해석을 위하여 사이클을 구성하는 각 과정은 열역학적 모델로 단순화하였고, 크랭크 각도에 따른 실린더의 압력과 작동유체를 구성하는 연료, 공기 및 연소생성물의 열역학적 물성 값들을 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였다. 실험데이터는 단기통 전기점화기관을 가솔린, 메탄올과 M90(메탄을 90%+부탄 10%의 혼합연료)을 연료로 WOT(Wide Open Throttle), MBT(Minimum advanced spark timing for Best Torque), 2500rpm 조건으로 운전하여 측정하였다. 계산에 이용한 자료는 실험으로 측정한 크랭크 각도에 따른 연소실의 압력, 흡입공기와 연료유량, 흡입공기 온도, 냉각수 온도와 배출가스 온도 등이다. 이를 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였으며 각 과정에서의 손실 일은 연소과정에서 가장 크며 팽창과정, 배출과정, 압축과정 및 흡입과정 순으로 크게 나타났다.

  • PDF