• Title/Summary/Keyword: Ignition Loss

Search Result 337, Processing Time 0.026 seconds

The study of geopolymer utilization of reclaimed ash by using magnetic separation method (자력선별법을 이용한 화력 발전소 매립회의 지오폴리머 원료화 연구)

  • Kim, Kangduk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.249-255
    • /
    • 2017
  • Using a magnetic separation process, pond ash generated in thermoelectric power plants was separated into magnetic materials and nonmagnetic materials in order to make it into a raw material of geopolymers and unburned carbon; screening characteristics according to the particle sizes and magnet strength levels of the pond ash were observed. Based on the results of magnetic separation into fine particle (0.15~0.84 mm) and rough particle (0.84~2.4 mm) pond ash using 3000 G magnets, the weight fraction and ignition loss of nonmagnetic materials were found to be higher than those of magnetic materials, regardless of the particle size. In the case of fine particle pond ash, when the magnet strength was increased from 3000 G to 10000 G, even those materials that were weakly magnetic were separated into magnetic materials, leading to drastic increases in the weight fraction of magnetic materials, such that the ignition loss accounted for 66.9 % (22.8 wt%) of the entire ignition loss of 32.6 wt%, despite of the low ignition loss. Based on the results of measurement of the compressive strength levels of geopolymers made of magnetic-separated rough particle pond ash, the compressive strength of geopolymers made of magnetic materials containing small amounts of unburned carbon was found to be 20 MPa.

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.

Design and Implementation of the Automatic Fire Extinguishing System Based on the Ignition Point Tracking using the Flame Detecter (화재감지기를 사용한 발화점추적기반의 자동소방시스템 설계 및 구현)

  • Paik, Seung Hyun;Kim, Young Wung;Oh, Se Il;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2013
  • To reduce the personnel and material loss caused by fire, we propose the automatic fire extinguishing system based on the ignition point tracking using the flame detecter. This automatic fire extinguishing system is composed of the flame detecting system and the fire extinguishing system based on the water cannon. We study the method for the ignition point tracking and the automatic fire extinguishing using the water cannon and the flame detecter. The flame detecting system for the early fire detection and the ignition point tracking has to be satisfied the requirement of the detecting range and the flame detection time. So we study the signal process algorithm for an improvement of the flame detecting system.

A Study on Hydration kinetics and Mechanical Properties of Cement Paste Incoporating Limestone Filler (석회석 미분말을 혼입한 시멘트 페이스트의 수화반응 및 역학적 특성 분석에 관한 연구)

  • Shin, Ki-Su;Bang, Mi-Jin;Park, Ki-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.230-231
    • /
    • 2017
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

  • PDF

Physico-Chemical Properties and Methane Production Rates for Busan Harbor Sediments (부산항만 퇴적물의 성분분석 및 메탄발생량 산정 연구)

  • Choi, boram;Lee, taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.37-42
    • /
    • 2011
  • The main objective of this study was to evaluate the current condition of harbor sediments and to estimate biochemical methane potentials from the harbor sediments. Sediment samples were collected from 10 different sampling sites. Ignition loss, elemental analyses, X-ray diffraction(XRD), X-ray fluorescence(XRF) tests were conducted to determine characteristics of the sediment. All sediments had similar elemental compositions and ignition loss were 8~10%. From the conventional BMP tests for 5 samples, cumulative methane production ranged from 11.9~15.5mL methane/(g of volatile solids), which were significantly lower than that for foods and paper. However, methane production rates for sediments were 5 to 20 times faster than those for foods and paper.

An Investigation of the Effect of Changes in Engine Operating Conditions on Ignition in an HCCI Engine

  • Lee, Kyung-Hwan;Gopalakrishnan, Venkatesh;Abraham, John
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1809-1818
    • /
    • 2004
  • The dependence of the ignition timing in an HCCI engine on intake temperature and pressure, equivalence ratio, and fuel species is investigated with a zero-dimensional model combined with a detailed chemical kinetics. The accuracy of the model is evaluated by comparing measured and computed results in a propane-fueled HCCI engine. It is shown that the peak pressure values are reproduced within 10% and ignition timing within 5$^{\circ}$ CA. The heat loss through the walls is found to affect significantly on the ignition timing for different inlet conditions. It is also shown that for the propane-fueled engine, the tolerance in intake temperatures is 20-25K and the tolerance in intake pressure is about 1 bar for stable operation without misfire or too early ignition. Comparison of propane and heptane fuels indicates that the tendency to misfire when heptane is employed as the fuel is less than that when propane is employed with the same wall temperature conditions. However, the heptane-fueled engine may have a lower compression ratio to avoid too early ignition and hence lower efficiency. For the selected set of engine parameters, stable operations might be achieved for the heptane-fueled engine with twice as much tolerance in intake temperatures as for the propane-fueled engine.

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.

A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG (충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

Effects of Antimony Trioxide-containing Coating on Fire Retardancy of Wood-based Materials (Antimony Trioxide가 첨가(添加)된 내화도료(耐火塗料)의 도막(塗膜)이 목질(木質) 판상재료(板狀材料)의 내화성(耐火性)에 미치는 영향(影響))

  • Yun, Young-Ki;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.31-42
    • /
    • 1992
  • In this study, the relative effectiveness of antimony trioxide-containing coat on fire retardancy of plywood, particleboard and medium density fiberboard was investigated and compared through ISO ignition test and inclined panel test with non-coated ones. The results obtained were summarized as fallows: Any treated materials was not ignited in inclined panel test with 5 minutes, but only particleboard among treated ones burned in ISO ignition test with fairly delayed time. The weight loss rate of plywood decreased with the increased addition level of fire-retardant and the least values were obtained in particleboard and MDF at addition level of 7% and 5% respectively. Carbonized area of wood based materials decreased with the increased addition level of fire retardant. The temperatures of back in plywood, particleboard treated with fire-retard ant coat containing 7% $Sb_2O_3$ showed the lowest but MDF did not show any effectiveness with the increased addition level. The first flash time of plywood treated with fire retardant coat containing 9% $Sb_2O_3$, MDF and particleboard treated with fire retardant coat containing 7% $Sb_2O_3$ were 257sec., 286.4sec., 165.4sec. respectively.

  • PDF