• Title/Summary/Keyword: Ignition Device

Search Result 109, Processing Time 0.024 seconds

Analysis of Dynamic Pressure Characteristics for Startup of KSLV-II 75 tonf Class Liquid Rocket Engine (한국형발사체 75톤 엔진의 시동 시 동압 특성 분석)

  • Moon, Yoonwan;Jung, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1084-1087
    • /
    • 2017
  • When a liquid rocket engine is started the oxidizer and fuel must be flowed into combustion chamber and gas generator with time differences. The wrong time difference between propellants or malfunction of ignition device can occur the explosion of combustion chamber due to detonation by energized premixed-propellants. Therefore it is important to observe the transient characteristic of propellants or to measure the inflow time of propellants into combustion chamber and gas generator. The measurement of static pressure is not enough to observe the propellants inflow time into combustion chamber and gas generator. By measuring dynamic pressure of main flow passage of propellants the accurate propellants inflow time could be investigated.

  • PDF

A Study to Prevent the Occurrence and Spread of Fire Caused by ESS Storage (ESS 저장창고로 인한 화재의 발생 및 확산방지를 위한 연구)

  • Shin, Joung Hyeon;Jo, Su Yeon;Kim, Geon-Woo;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.140-141
    • /
    • 2021
  • ESS refers to a device that can store electrical energy produced by renewable energy generation, etc. and use it when necessary. Lithium-ion batteries are composed of high energy density and combustible electrolyte, so once ignited, it is difficult to extinguish. Many studies have been conducted to solve the problem of the battery itself as the cause of the fire. However, there is also a problem with the structure in which ESS(hereinafter referred to as ESS storage) is installed itself. Therefore, the purpose of this paper is to provide data to solve the problems related to ignition and fire spread due to the problem of ESS storage. In summer, the internal temperature of the ESS storage rises due to solar radiation to trigger a fire, so it is necessary to prevent an internal temperature rise due to solar radiation. Research on standards, materials used, structures, etc. for ESS storage and new regulations are required.

  • PDF

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

The Arc Dispersion Properties by Switching of High Sensitivity Type RCD Contacts (고감도형 누전차단기 접점의 스위칭에 따른 아크 비산 특성)

  • Choi Chung-Seog;Kim Dong-Woo;Kim Young-Seok;Lee Ki-Yeon
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.63-68
    • /
    • 2005
  • In this study, the arc dispersion properties were analyzed according to switching of high sensitive type Residual Current Protective Device(RCD) contacts. Arc dispersion and ignition process was taken by high speed imaging system(HSIS). In this experiment, electric lamps(60 W) and heaters(950 W) were connected in parallel as loads. In case of normal RCD, it took about 2.3(ms) from the generation of arc to the extinction of uc. When arc was dispersed in normal RCD, it did not ignite cotton. Whereas, in case of RCD deteriorated by NaCl solution, the range of arc dispersion was wider and the arc lasted for 3.3[ms] more compared to normal RCD. And the arc ignited cotton. In order to prevent accidents caused by RCD, we should be careful of environmental factors, such as dust and humidity, and the parts of RCD should be used as incombustible materials.

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Devlopment of Smart Pyrotechnic Igniter (스마트 파이로테크닉스 점화장치 개발)

  • Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.252-255
    • /
    • 2007
  • Recently military industrial company, utilizing company funded R&D and goverment and industry contracts, has developed ACTS/DACS technology. This technology can be utilized to rapidly steer "smart" bullets, "smart" rounds, tactical missile, cruise missile and kill vehicles for both endo- and exoatmospheric applications. The ACTS/DACS typically consists of a Smart Bus Controller(SCB), a proprietary network firing bus, Smart Pyrotechnic Devices(SPD), rocket motors, and a structure. The SCB communicates with the SPDs over the propretary network firing bus. Each rocket motor contains an SPD which provides rocket motor ignition. Firing energy is stored locally in the SPD so surge currents do not occur in the system as rocket motors are fired. This approach allows multiple, truly simultaneous firings without the need for large, dedicated batteries. Each SPD also functions as a network tranceiver and high reliability fir set all in the space of a single-sided 10 millimeter diameter circuit. The present work develops a new means for igniting explosive materials. The volume of semiconductor bridge (SCB) is over 30 times smaller than a conventional hot wire. We believe that the present work has a potential for development of a new igniter such as smart pyrotechnic device.

  • PDF

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine (디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(I) - Combustion Chamber (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(I)-연소기)

  • Choi, Hwan-Seok;Han, Young-Min;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1027-1037
    • /
    • 2009
  • The development of a combustion chamber for a 30-$ton_f$ regeneratively-cooled space liquid rocket engine is described. Starting from the development of bi-propellant swirl coaxial injectors, essential technologies were verified through subscale combustion chambers and afterwards applied to the full-scale combustion chambers. A total of 5 full-scale combustion chambers have been utilized to verify ignition, combustion efficiency and stability, cooling, and duration requirements. A total of 46 combustion tests were performed among which 23 tests were parallely performed with stability rating tests using a pulse gun device. The test results have revealed that the 30-$ton_f$ regeneratively-cooled combustion chamber fully complies to the performance and combustion stability requirements and thus concluded that the development is successfully completed.