• Title/Summary/Keyword: Ignition Delay Period

Search Result 28, Processing Time 0.022 seconds

Some Considerations of the Ignition Delay Period in D.I Diesel Engine (직접분사식 디젤기관의 착화지연기간에 대한 고찰)

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • The four combustion stages in a diesel engine have close correlation among them. Especially, the ignition delay period has significant effect on the following combustion stage. And the period is also one of inevitable combustion processes in the diesel engine. For example, the diesel knocking is a well-known phenomenon due to the long ignition delay period. The interval of the ignition delay period is affected by the mixture formation process in the cylinder. However, in the case of the D.I. diesel engine, the available duration to make the mixture formation of air-fuel is very short. In addition, the means of the mixture formation mainly depends on the injection characteristics and properties of the fuel. It is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this study, using the visible engine, we measured the ignition delay period by photo sensor which detect occurrence of flame and presented the factors of the injection characteristics such as kinds of injection system, the injection pressure and the injection timing. The relation between the ignition delay period and cylinder pressure diagram which was concurrently obtained was also estimated.

An Experimental Study on the Performance of Turbocharged Diesel Engine (터보과급 디이젤기관의 성능에 관한 실험적 연구)

  • Chae, J.O.;Chung, S.C.;Baek, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

The Effect of Mixture Component in a Gasoline Engine on Output (The Effect of Ignition Delay and Combustion Period) (가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 출력(出力)에 미치는 영향(影響) (점화지연(点火遲延) 및 연소(燃燒) 기간(期間)에 미치는 영향(影響)))

  • Song, J.I.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • The effect of mixture component makes a nelay time and a long total combustion period $\tau_{p\;max}$. The flame propagation delay $\tau_{df}$ was determined by the record of current ion. The pressure release delay $\tau_{dp}$ and $\tau_{p\;max}$ were determined by the indicated pressure diagram in constant volume of the combustion chamber. The results are as follows: 1) The ignition delay $\tau_t$ time takes the minimum value around $\Phi=1.15$. 2) $\tau_{df}$ and $\tau_t$ time increased according to the increases of the concentrated dilution gases, because the adiabatic flame temperature decreased due to the increases of the heat capacity. But dilution gases have little effect on flame nucleus formation delay 3) The relation between $\tau_t$ time and reciprocal laminar burning velocity is almost linear. 4) The increase of the propagation length is accompanied with increased ratio of the $\tau_{df},\;\tau_{dp},\;\tau_{t},\;\tau_{p\;max}$.

  • PDF

A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil (Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

A study on the effect of discharge in a multiple spark ignition engine (다회수 스파크 점화기관의 방전효과에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.55-64
    • /
    • 1989
  • The effect of discharge have been investigated for condition of spark in a multiple spark ignition engine, as the spark duration, capacitive and inductive discharge energy were calculated for condition of spark by ignition wave and energy formula. The useful portion of spark discharge is divided into capacitance portion and inductance portion. It was found that capacitive discharge energy and spark duration were increased according to increasing number of spark, and inductive discharge energy was increased according to increasing spark interval. Therefore engine torque was increase and lean misfire limit was extended comparing with the standard ignition system. It found that spark energy was discharged within ignition delay period availability acted on the formation and growth of flame kernel, and total spark energy was increased according to increasing number of spark times, but discharged spark energy after ignition delay became unavailable energy. And the capacitive discharge energy has the dominant effect for stoichiomeric or not very rich air-fuel mixture but inductive discharge energy has the dominant effect for lean air-fuel mixture.

  • PDF

A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Part III : Measurement of Flaming Duration, Effects of Auxiliary-Fuel Injection-Timing and Turbulence on Shortening the Ignition Delay Period - (高溫空氣流에 噴射한 噴霧의 自然燃燒에 관한 硏究 - 제3보: 분무의 연소기간 측정, 보조연료의 분사시간 및 난류가 분무의 착화지정기간 단축에 미치는 영향 -)

  • 방중철;태전간랑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 1986
  • On the hypothesis that the unstable intermediates yield by the pre-reaction of auxiliary fuel become an initiator or an explosive center which promotes the chain reaction of main fuel, various organic compounds below $C_{10}$ are injected as an auxiliary fuel prior to main injection. In the previous papers, the effects of the auxiliary fuel additions on the ignition delay period, the stability of flame, the NO concentrations in their exhaust gases have been investigated. In the present paper, to confirm where the most suitable location of lean pre-mixture for the combustion of main fuel is, and how the lean pre-mixture is contacted with main fuel, the effects of the injection timing of auxiliary fuel and the turbulence on combustion processes are investigated. Moreover, from the schlieren and color photographs of flame in the combution field, it could be found that the ignition nuclei are formed in a wider region of main spray, and that these ignition nuclei promote the development of flame, which results in the reduction of flaming duration.

The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle (승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향)

  • Kang, Sang-Kyu;Kim, Jae-Heon;Baek, Sung-Nam;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF

Fundamental Experiments of a Compression Ignition Engine Using Gaseous Fuel (가스체 연료를 사용하는 압축착화기관에 관한 기초적 연구)

  • ;太田 幹郞
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.147-157
    • /
    • 1996
  • Natural gas is gaining more attraction as a future fuel in particular both for environmental protection and energy conservation. In order to bring about more widespread use of gaseous engines, the technology capable of achieving output and efficiency performance equivalent to that of diesel engines needs to be developed. In the present paper, the requirements of the pilot torch from pre-chamber for ensuring ignition and promoting combustion are discussed by means of taking high-speed flame photography and system can run with leaner mixture of various fuels comparing to the electric plug ignition system cause the ignition delay period ignited with the torch and the combustion period are very short in spite of changing A/F of gaseous fuels in the main chamber. However, the suitable piston-cavity design for the use of lower-hydrocarbon fuels such as propane and butane must be discussed increasingly in the mear future.

A study on knock model in spark ignition engine (스파크 점화 기관의 노크 모델에 관한 연구)

  • 장종관;이종태;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.30-40
    • /
    • 1992
  • Spark knock obstructs any improvement in the efficiency and performance of an engine. As the knock mechanism of spark ignition engine, the detonation and the autoignition theory have been offered. In this paper, the knock model was established, which was able to predict the onset of knock and knock timing of spark ignition engine by the basis of autoignition theory. This model was a function of engine speed and equivalent air-fuel ratio. When this established knock model was tested from 1000rpm to 3000rpm of engine speed data, maximum error was crank angle 2 degrees between measured and predicted knock time. And the main results were as follows by the experimental analysis of spark knock in spark ignition engine. 1) Knock frequency was increased as engine speed increased. 2) Knock amplitude was increased as mass of end gas increased. 3) Knock frequency was occured above minimum 18% mass fraction of end gas.

  • PDF

The Combustion Characteristics of Diesel-Biodiesel Blended Fuel Droplets Using the Modified Image Processing Method According to Flame Instability (화염 불안정성에 따른 개선된 이미지 처리 기법을 활용한 디젤-바이오디젤 혼합 연료 액적의 연소 특성)

  • Choi, Ju Hwan;Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • The objective of this study is to analyze the basic flame behavior characteristics using the single fuel droplet combustion of diesel, palm-based biodiesel, and canola-based biodiesel. The results were compared and analyzed through the post processed image, which was applied the threshold level for removing noise in the raw image. The raw image was taken by a high-speed camera during the entire combustion process. At the same time, the maximum flame length, which was measured by the application code of the MATLAB program, the ignition delay, and the combustion period were compared and analyzed.