• 제목/요약/키워드: Ignition Coil/Dwell

검색결과 2건 처리시간 0.015초

LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발 (The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

Breaker Point 型 점火裝置 性能 을 極大化하기 위한 Pre - Resistance 효果 에 對한 硏究 (A Study of the Pre-Resistance Effects on the Optimization For Performance of the Ignition System with the Breaker Point Type)

  • 손병진;신영철
    • 대한기계학회논문집
    • /
    • 제6권2호
    • /
    • pp.133-139
    • /
    • 1982
  • One of factors that affect combustion in the cylinder of the engine is to keep a greater energy in the ignition system to minimize pollutant emissions and to increase its performance of the low temperature. This paper reviews theoretically the state and input variables of the ignition system from the state transition equation. Effects on characteristics of the system such as primary current, secondary available voltage and spark duration by reducing the pre-resistance from 3.5 to 0 ohm in 12V system is experimentally investigated when the ignition coil has a primary resistance of 1.5 ohms ad the dwell angle of the breaker point is 43.2 degrees (0.75 radian). Advantages and limitations for using the low resistance of the primary circuit are also presented to optimize the performance of the ignition system with the breaker point.