• Title/Summary/Keyword: Ieodo ocean research station

Search Result 63, Processing Time 0.025 seconds

Validation of Satellite Altimeter-Observed Sea Surface Height Using Measurements from the Ieodo Ocean Research Station (이어도 해양과학기지 관측 자료를 활용한 인공위성 고도계 해수면고도 검증)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Seok Jae Gwon;Hyun-Ju Oh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.467-479
    • /
    • 2023
  • Satellite altimeters have continuously observed sea surface height (SSH) in the global ocean for the past 30 years, providing clear evidence of the rise in global mean sea level based on observational data. Accurate altimeter-observed SSH is essential to study the spatial and temporal variability of SSH in regional seas. In this study, we used measurements from the Ieodo Ocean Research Station (IORS) and validate SSHs observed by satellite altimeters (Envisat, Jason-1, Jason-2, SARAL, Jason-3, and Sentinel-3A/B). Bias and root mean square error of SSH for each satellite ranged from 1.58 to 4.69 cm and 6.33 to 9.67 cm, respectively. As the matchup distance between satellite ground tracks and the IORS increased, the error of satellite SSHs significantly amplified. In order to validate the correction of the tide and atmospheric effect of the satellite data, the tide was estimated using harmonic analysis, and inverse barometer effect was calculated using atmospheric pressure data at the IORS. To achieve accurate tidal corrections for satellite SSH data in the seas around the Korean Peninsula, it was confirmed that improving the accuracy of tide data used in satellites is necessary.

A study on Ieodo Ocean Research Station Installation and Provisional Operation (이어도 종합해양과학기지 설치 및 임시운영에 대한 고찰)

  • 심재설;이승준
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.323-327
    • /
    • 2003
  • 선진외국에서는 관측탑을 1960년대부터 건설운영하고 있다. 이는 21세기 해양시대를 앞두고 있는 시점에서 해양자원의 탐사 및 개발과 해양환경 보존 및 해상, 기상예측에 대한 기술의 확보는 매우 중요한 사항으로 대두되고 있다. 이를 위해서는 이러한 정보를 상시 관측할 수 있는 시설이 확보되어야 한다. (중략)

  • PDF

Examination of Altimeter Wave Data in the Sea Around Ieodo Ocean Research Station (이어도 해양과학기지 인근해역에서의 고도계 파고 자료 검증)

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • Big swell is often generated offshore and damages the coasts after travelling long distance. In order to prevent coastal damages, wave measurements should be performed offshore as well as coastal waters around Korea. However, in-situ wave measurements are difficult because of high expense of instruments and high risk of operation. Satellite wave measurements using altimeter make it possible to get wave information from the sea difficult to execute field measurements such as the center of the East Sea or exclusive territorial waters. In order to use wave information from the satellite altimeter, it is important to verify altimeter wave data with in-situ data. This paper examines significant wave height data observed by ENVISAT altimeter by comparing wave data observed at Ieodo station.

Application of a Large Ocean Observation Buoy in the Middle Area of the Yellow Sea (황해중부해역에서의 대형 해양관측부이의 운용)

  • Shim, Jae-Seol;Lee, Dong-Young;Kim, Sun-Jeong;Min, In-Ki;Jeong, Jin-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.401-414
    • /
    • 2009
  • Yellow Sea Buoy (YSB) was moored in the center of the Yellow Sea at 35$^{\circ}$51'36"N, 124$^{\circ}$34'42"E, on 12 September 2007. YSB is a large buoy of 10 m diameter, and as such is more durable against collision by ships and less likely to be lost or removed by fishing nets compared to small ordinary buoys of 2.3 m diameter. YSB is equipped with 12 kinds of oceanic and meteorologic instruments, and transfers its realtime observation data to KORDI through ORBCOMM system every 1 hour. Data on ocean winds, air temperature, air pressure, and sea temperature appear to be accurate, while water property sensors (AAQ1183), which are sensitive to fouling, are producing errors. YSB (2007), Ieodo ocean research station (2003), and Gageocho ocean research station, which was completed in October 2009, will establish the 2 degrees interval by latitude in the Yellow Sea, and they will contribute though the 'Operational Oceanography System' as the important realtime observation network.

A Strategy for Environmental Improvement and Internationalization of the IEODO Ocean Research Station's Radiation Observatory (이어도 종합해양과학기지의 복사관측소 환경 개선 및 국제화 추진 전략)

  • LEE, SANG-HO;Zo, Il-SUNG;LEE, KYU-TAE;KIM, BU-YO;JUNG, HYUN-SEOK;RIM, SE-HUN;BYUN, DO-SEONG;LEE, JU-YEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.118-134
    • /
    • 2017
  • The radiation observation data will be used importantly in research field such as climatology, weather, architecture, agro-livestock and marine science. The Ieodo Ocean Research Station (IORS) is regarded as an ideal observatory because its location can minimize the solar radiation reflection from the surrounding background and also the data produced here can serve as a reference data for radiation observation. This station has the potential to emerge as a significant observatory and join a global radiation observation group such as the Baseline Surface Radiation Network (BSRN), if the surrounding of observatory is improved and be equipped with the essential radiation measuring instruments (pyaranometer and pyrheliometer). IORS has observed the solar radiation using a pyranometer since November 2004 and the data from January 1, 2005 to December 31, 2015 were analyzed in this study. During the period of this study, the daily mean solar radiation observed from IORS decreased to $-3.80W/m^2/year$ due to the variation of the sensor response in addition to the natural environment. Since the yellow sand and fine dust from China are of great interest to scientists around the world, it is necessary to establish a basis of global joint response through the radiation data obtained at the Ieodo as well as at Sinan Gageocho and Ongjin Socheongcho Ocean Research Station. So it is an urgent need to improve the observatory surrounding and the accuracy of the observed data.

Evaluation of International Quality Control Procedures for Detecting Outliers in Water Temperature Time-series at Ieodo Ocean Research Station (이어도 해양과학기지 수온 시계열 자료의 이상값 검출을 위한 국제 품질검사의 성능 평가)

  • Min, Yongchim;Jun, Hyunjung;Jeong, Jin-Yong;Park, Sung-Hwan;Lee, Jaeik;Jeong, Jeongmin;Min, Inki;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.229-243
    • /
    • 2021
  • Quality control (QC) to process observed time series has become more critical as the types and amount of observed data have increased along with the development of ocean observing sensors and communication technology. International ocean observing institutions have developed and operated automatic QC procedures for these observed time series. In this study, the performance of automated QC procedures proposed by U.S. IOOS (Integrated Ocean Observing System), NDBC (National Data Buy Center), and OOI (Ocean Observatory Initiative) were evaluated for observed time-series particularly from the Yellow and East China Seas by taking advantage of a confusion matrix. We focused on detecting additive outliers (AO) and temporary change outliers (TCO) based on ocean temperature observation from the Ieodo Ocean Research Station (I-ORS) in 2013. Our results present that the IOOS variability check procedure tends to classify normal data as AO or TCO. The NDBC variability check tracks outliers well but also tends to classify a lot of normal data as abnormal, particularly in the case of rapidly fluctuating time-series. The OOI procedure seems to detect the AO and TCO most effectively and the rate of classifying normal data as abnormal is also the lowest among the international checks. However, all three checks need additional scrutiny because they often fail to classify outliers when intermittent observations are performed or as a result of systematic errors, as well as tending to classify normal data as outliers in the case where there is abrupt change in the observed data due to a sensor being located within a sharp boundary between two water masses, which is a common feature in shallow water observations. Therefore, this study underlines the necessity of developing a new QC algorithm for time-series occurring in a shallow sea.

Study on Sea Surface Reconstruction Using Sequent Radar Images (연속된 레이더 영상을 이용한 해수면 복원 연구)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.100-105
    • /
    • 2013
  • This paper presents a sea surface reconstruction method that uses measured radar images by applying filtering techniques and identifying wave characteristics of the surrounding the Ieodo ocean research station using WaveFinder (X-band wave measurement radar), which is installed in the station. In addition, the results obtained from real radar images are used to verify the reconstructed sea surface. WaveFinder is a marine system that was developed to measure wave information in real time. The WaveFinder installed in the station could acquire sequent images for the sea surface at constant time intervals to obtain real time information (Wave height, mean wave period, wave directionality, etc.) for the wave by getting a three-dimensional spectrum by applying an FFT algorithm to the acquired sequent images and wave dispersion relation. In particular, we found the wave height using the SNR (Signal to noise ratio) of the acquired images. The wave information measured by WaveFinder could be verified by comparing and analyzing the results measured using the wave measurement instrument (Sea level monitor) in the station. Additionally, the wave field around the station could be reconstructed through the three-dimensional spectrum and the inverse FFT filtering from the analyzed results for the measured radar images. We verified the applicability of the sea surface reconstruction method by comparing the measured and simulated sea surfaces.

The Variation of Aerosol Number Concentrations in Relation with 3D Wind Components in the Ieodo Ocean Research Station (이어도 해양종합과학기지에서의 3차원 바람성분에 따른 에어로솔 수 농도 변동 특성)

  • Park, Sung-Hwa;Jang, Sang-Min;Lee, Dong-In;Jung, Woon-Seon;Jeong, Jong-Hoon;Jung, Sung-A;Jung, Chang Hoon;Kim, Kyungsik;Kim, Kyung-Eak
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.97-107
    • /
    • 2012
  • To investigate variation of aerosol number concentration at each different size with three-dimensional (3D) wind components in ocean area, aerosol particles and 3D wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest from Marado, the southernmost island of Korea, from 25 June to 8 July 2010. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the size of aerosol particles and 3D wind components (zonal (u), meridional (v), and vertical (w) wind) respectively. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 1.0 ${\mu}m$ in diameter by wind direction during precipitation. In the number concentration of aerosol particles with respect to the weather conditions, particles larger than 1.0 ${\mu}m$ in size were decreased and sustained to the similar concentration at smaller particles during precipitation. The increase in aerosol number concentration was due to the sea-salt particles which was suspended by southwesterly and upward winds. In addition, the aerosol number concentration with vertical wind flow could be related with the occurrence and increasing mechanism of aerosol in marine boundary layer.

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정-)

  • Shin, Seung-Ho;Hong, Key-Yong;Choi, Hak-Sun;Noriaki Hashimoto
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition of deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result caused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation The modified W AM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

Classification of Passing Vessels Around the Ieodo Ocean Research Station Using Automatic Identification System (AIS): November 21-30, 2013 (선박자동식별장치(AIS)를 이용한 이어도 종합해양과학기지 주변 통항 선박의 분류: 2013년 11월 21일~30일)

  • Hong, Dan-Bee;Yang, Chan-Su
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In this study, we installed the Automatic Identification System (AIS) receiver on the Ieodo Ocean Research Station (IORS) from November 21 to 30, 2013 in order to monitor marine traffic and fishery activity in the jurisdictional sea area. The collected AIS raw data consist of static data report (MMSI, IMO NO., Call Sign, Ship Name, etc.) and position information report (position, speed, course, etc.), and the developed program was applied to classify ships according to ship flag and type information. The nationalities are released from the first three-digit numbers (MID) of MMSI, but in general most of small ships do not send an exact ship flag through Class B type AIS, a simplified and low-power equipment. From AIS data with flag information, ships under the flag of China had the highest frequency and the second was Korean flag, while in ship type cargo and fishing vessels were dominant in sequence. As for the ships without flag information, we compared the tracks with others in order to estimate ship flags. It can be said that fleets of ships with Chinese frequently appear sail together for fisheries over the waters, because the unknown ships followed a similar moving pattern with Chinese fishing vessels.