• 제목/요약/키워드: Idle speed control valve

검색결과 14건 처리시간 0.025초

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계 (Design of Optimal Idle Speed Controller by Sliding Mode Observer)

  • 이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

안정한 엔진 공회전 모드를 위한 제어기 설계 (Controller Design for Stable Engine Idle Mode)

  • 이영춘;방두열;이성철
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

불꽃점화 기관에 외란에 안정한 제어기 연구 (A Study on the Controller having Disturbances in Spark Ignition Engine)

  • 이영춘;정진호;윤여홍;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2000
  • This paper presents an PID type fuzzy based method for nohnear engine idle controller The output is a duty cycle(DC) for driving a idle speed cont개l valve(1SCV). For precise control of SI engine, the CPS sensor and coolant temperature are used. Visual C* language is used to make simulation panel for the fast and precise idle speed control. The dSPACE board and supported Control desk program is used in experiment ta the same purpose as simulation. The experimental results have a good agreement with simulation ones.

  • PDF

LPG 자동차 엔진의 솔레노이드밸브, 릴레이, 공회전조절장치의 고장사례 연구 (Study for Failure Examples of Solenoid Valve, Relay and Idle Speed Control Actuator in Liquid Petroleum Gas vehicle Engines)

  • 김청균;이일권;조승현
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.47-52
    • /
    • 2011
  • 이 논문의 목적은 LPG 자동차의 전자제어에 대한 요소의 하나인 액추에이터에 대한 고장사례를 찾아 분석하고 연구하는 것이다. 차량의 연료를 저장하는 봄 내부의 LPG 긴급 차단 솔레노이드 밸브의 필터가 막혀 연료의 공급이 간헐적으로 차단되는 현상이 발생되어 엔진이 작동하는 동안 엔진의 초기시동불량이나 가속이 되지 않는 것을 확인하였다. 엔진 컨트럴 릴레이 부위의 접점부가 가공불량이나 조립불량에 의해 완전한 면접촉이 되지않아 접촉저항이 발생되어 초기 시동을 걸었을 때 시동이 걸렸으나 재시동을 걸 때 시동이 걸리지 않는 현상을 확인하였다. 공회전 조절장치의 내부에 카본이 퇴적되어 액추에이터가 고착되어 흡입공기의 공급이 감소되어 자동차의 시동이 걸려 공회전 상태일 때 엔진의 회전수가 규정 범위를 벗어나 상승과 하락을 반복하는 불안정 상태를 확인하였다.

공회전속도 조절용 스텝모터가 AT차량의 급발진 현상에 미치는 영향 (Some Effects on AT Vehicle's Sudden Acceleration due to Stepping Motor for Compensation of Idle Speed)

  • 김종일;차정연;손정배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.879-885
    • /
    • 2000
  • This study is carried out to make clear the reason of occurrence of sudden acceleration incident of AT vehicle. The stepping motor is used to control the engine speed at idle by compensating the volume of air. By the way it's valve is contaminated by blow-by gas, deposit and back fire etc. This contamination could occur the load of motor at low temperature. This plays an important role in damaging the motor's coil with the motor's performance interfered. If it's coil is damaged the ISC could malfunction. If these phenomena occur, the speed of engine may increase or the engine may stall with hunting.

  • PDF

가변실린더시스템을 이용한 차량의 연비향상에 관한 연구 ((A study on the fuel economy in the vehicle using variable cylinder system))

  • 이태표;김종부;박준훈
    • 대한전자공학회논문지TE
    • /
    • 제39권1호
    • /
    • pp.71-76
    • /
    • 2002
  • 차량의 폭발적 증가로 인해 저속, 서행형태로 주행시간이 점점 늘어나므로, 본 연구에서는 연비향상을 목적으로 정차상태에서는 일부 실린더만으로 일정한 엔진회전수를 유지하고, 주행상태에서는 전 실린더를 이용하는 가변실린더에 대해 실제 하드웨어로 제작하여 실험해 보았다. 과거에 일부 제작되었던 가변실린더 엔진은 정차상태나 저속상태에서 사용하는 실린더 주위에 열이 집중하여 열응력이 발생하고, 사용하지 않는 실린더는 냉각수의 순환으로 인해 주변의 온도가 더욱 떨어지게 되어, 재점화시에 많은 유해가스가 배출되고 연료 소모량도 많아지게 되며, 엔진회전수가 고르지 못하는 문제가 있었다. 이러한 문제점을 극복하고자 정지상태나 저속주행상태에서와 같이 많은 출력을 요하지 않는 운행조건에서는 새로운 점화방식과 밸브 개폐시기를 이용하여 연비를 향상시키는 방안을 제시하고, 그 타당성을 검증하였다.

마이크로컴퓨터를 이용한 가솔린 기관용 전자제어장치의 개발에 관한 연구 (A Study on the Development of an Electronic Control Unit for a Gasoline Engine using Microcomputer)

  • 김태훈;조진호
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.224-237
    • /
    • 1995
  • An ECU(Electronic Control Unit) with 16 bit microcomputer has been developed. This system includes hardware and software for more precise control on fuel injection, ignition timing, and idle speed. This control system employs an air flow sensor of the hot wire type, a direct ignition system, an idle speed control system using a solenoid valve, and a crank angle sensor. Especially, the crank angle sensor provides two separate signals: One is the position signal(POS) which indicates 180 degree pulses per revolution, and the other is the reference signla(REF) that represents each cylinder individually. The conventional engine control system requires at least two engine revolutions in order to identify the cylinder number. However, the developed engine control system can recognize the cylinder number within a quarter of an engine revolution. Therfore, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately, Furthermore, the number of misfire reduces during the cold start.

  • PDF

소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 디자인 (Low-Noise Design of Passage of Idle Speed Control Actuator in Automotive Engines Using Scaling Laws for Noise Prediction)

  • 정철웅;김재헌;박용환;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.283-290
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an Idle Speed control Actuator (ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying Computational Fluid Dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

  • PDF

소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계 (Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction)

  • 정철웅;김재현;김성태;박용환;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.