• 제목/요약/키워드: Identification of cavitation

검색결과 6건 처리시간 0.017초

Cavitation state identification of centrifugal pump based on CEEMD-DRSN

  • Cui Dai;Siyuan Hu;Yuhang Zhang;Zeyu Chen;Liang Dong
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1507-1517
    • /
    • 2023
  • Centrifugal pumps are a crucial part of nuclear power plants, and their dependable and safe operation is crucial to the security of the entire facility. Cavitation will cause the centrifugal pump to violently vibration with the large number of vacuoles generated, which not only affect the hydraulic performance of the centrifugal pump but also cause structural damage to the impeller, seriously affecting the operational safety of nuclear power plants. A closed cavitation test bench of a centrifugal pump is constructed, and a method for precisely identifying the cavitation state is proposed based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Deep Residual Shrinkage Network (DRSN). First, we compared the cavitation sensitivity of pressure fluctuation, vibration, and liquid-borne noise and decomposed the liquid-borne noise by CEEMD to capture cavitation characteristics. The decomposition results are sent into a 12-layer deep residual shrinkage network (DRSN) for cavitation identification training. The results demonstrate that the liquid-borne noise signal is the most cavitation-sensitive signal, and the accuracy of CEEMD-DRSN to identify cavitation at different stages of centrifugal pumps arrives at 94.61%

연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법 (Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing)

  • 이희창;김태형;손권;이필호
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

음향스텔스 성능 향상을 위한 PRAIRIE 공기 분사량 제어 실험 (Tests on Ventilation Control of PRAIRIE for Improving Acoustic Stealth Performance)

  • 이희창;문영선;강승희
    • 한국군사과학기술학회지
    • /
    • 제23권6호
    • /
    • pp.602-608
    • /
    • 2020
  • PRAIRIE(Propeller Air Induced Emission) system is a kind of underwater radiated noise suppression systems to reduce the probability of the identification or classification of our warship's acoustic signature by an enemy ship. It is effective in case of strong cavitation events. This is because air bubbles emitted from the PRAIRIE system mitigate drastic collapses of the cavity bubbles that can generate an intense shock wave. However, when the PRAIRIE system is operated in a non or weak cavitation condition, it might increase the total level of underwater radiated noise and induce the acoustic signatures. Therefore, this paper presents the trial results on ventilation control of PRAIRIE to find a more efficient operation depend on the cavitation condition. Then, we show a variation of the amplitude modulation characteristics according to ventilation control.

수중 프로펠러 명음 현상의 규명에 관한 연구 (A study on the identification of underwater propeller singing phenomenon)

  • 김태형;이형석
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2018
  • 본 논문은 모형 프로펠러를 대상으로 공동수조 시험, 수중 충격시험, 유한요소해석 및 전산유체해석에 기반하여 수행한 명음 발생 메커니즘 연구이다. 선미 유동을 모사하기 위해 반류망, 프로펠러 및 방향타를 설치하고 수중청음기와 가속도계로 프로펠러 명음 현상의 발생과 소멸을 계측하였다. 유한요소해석을 통해 프로펠러 날개의 고유진동수를 예측하고 접촉 및 비접촉식 충격시험으로 이를 검증하였다. RANS(Reynolds Averaged Navier-Stokes) 방정식 기반 전산유체해석을 통하여 프로펠러 날개 각 단면의 유속과 유효 받음각을 계산하였으며, DES(Detached Eddy Simulation) 기반 고해상도 해석을 통해 명음 발생 위치에서 2-D 날개 단면 뒷전의 와류흘림주파수(vortex shedding frequency) 계산을 수행하였다. 수치적으로 예측된 와류흘림주파수는 모형시험으로 계측한 명음 발생 주파수 및 날개 고유진동수와 일치함을 확인하였다.

有限差分法을 利용한 油壓管路의 特性에 관한 硏究 (A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method)

  • 오철환;정선국;송창섭
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 1986
  • 본 논문에서는 특성유선해법에 의하여 각 방정식을 유한착분방정식으로 변환 하고 이를 유압시스템에 사용하기 위하여 유압회로의 일반적인 요소인 서어보밸브, 방향제어밸브, 유압모우터, 실린더, 릴리이프 밸브, 필터등이 회로내에 연결되어 있는 경우에 대하여 해석할 수 있는 프로그램을 짜고 유압시스템에서 발생하는 압력 및 유량의 속도현상을 예측할 수 있도록 하였다. 프로그램의 정확도를 판단하기 위하여 계산결과와 실험결과를 비교하였으며 압력과도현상에 미치는 요소인 부하의 크기, 관로의 재질, 관로의 길이, 밸브의 개별시간, 액튜에이터 입구측과 출구측 사이에 바이패스밸브의 설치효과에 대하여 연구하였다.

캐비테이션 터널에서 PIV를 이용한 프로펠러 후류 보오텍스 유동계측 및 거동해석 (PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel)

  • 백부근;김진;박영하;김기섭;김경열
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.619-630
    • /
    • 2005
  • A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.