• 제목/요약/키워드: Identification method

검색결과 5,631건 처리시간 0.034초

Load and Mutual Inductance Identification Method for Series-Parallel Compensated IPT Systems

  • Chen, Long;Su, Yu-Gang;Zhao, Yu-Ming;Tang, Chun-Sen;Dai, Xin
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1545-1552
    • /
    • 2017
  • Identifying the load and mutual inductance is essential for improving the power transfer capability and power transfer efficiency of Inductive Power Transfer (IPT) systems. In this paper, a steady-state load and mutual inductance identification method focusing on series-parallel compensated IPT systems is proposed. The identification model is established according to the steady-state characteristics of the system. Furthermore, two sets of identification results are obtained, and then they are analyzed in detail to eliminate the untrue one. In addition, the identification method can be achieved without extra circuits so that it does not increase the complexity of the system or the control difficulty. Finally, the feasibility of the proposed method has been verified by simulation and experimental results.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명 (Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method)

  • 김정수;권경수;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

금려환(錦儷丸)의 현미감정 연구 (Microscopic Identification of the Chinese Patent Medicine 'Geum Ryeo Hwan')

  • 김정묘;박종희
    • 생약학회지
    • /
    • 제37권2호통권145호
    • /
    • pp.116-119
    • /
    • 2006
  • Geum Ryeo Hwan(錦儷丸) is Chinese patent medicine which has been used for women's diseases and climacteric syndrome in Korea. It consists of 12 kinds of powdered crude drugs. In powdered crude drugs, it is hard to identify each component by chemical analysis or morphological examination. However, the method of identification of powdered crude drugs has not been clearly established. Therefore, it is of interest to establish the microscopic method for identification of powdered crude drugs of Chinese patent medicines. The effectiveness of microscopic method is exemplified by the identification of tissue and contents of crude drugs by comparison with standard drugs. Moreover, this method has advantage as a microscale analysis, since it requires only a small amount of specimens. In this study, it is demonstrated that the microscopic method is very effective for the identification of 12 crude drug ingredients in Geum Ryeo Hwan.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

특성행렬 직접 규명법에 의한 강체특성의 실험적 추정 (Experimental Identification of Rigid Body Properties by Direct System Identification Method)

  • Jeong, W.B.;Ryu, S.J.;Koe, D.M.
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.22-29
    • /
    • 1995
  • An experimental method to identify the rigid properties (mass, moment of inertia, center of mass) of mounted structures is presented. A direct system identification method is developed and applied to identify the mass, damping and stiffness martix directly from the translational response of vibration testing. Conventional method is sensitive to noise since it needs artificial rotational response of temporary center of mass which is made by the linear transformation of translational response. A presented method needs only the translational response, and it is robuster to noise than conventional method. Several experimental and numerical implementations show the presented method is effective.

  • PDF

Adaptive Modulation Method using Non-Line-of-Sight Identification Algorithm in LDR-UWB Systems

  • 마림천;황재호;최낙현;김재명
    • 한국통신학회논문지
    • /
    • 제33권12A호
    • /
    • pp.1177-1184
    • /
    • 2008
  • Non-line-of-sight (NLOS) propagation can severely weaken the accuracy of ranging and localization in wireless location systems. NLOS bias mitigation techniques have recently been proposed to relieve the NLOS effects, but positively rely on the capability to accurately distinguish between LOS and NLOS propagation scenarios. This paper proposes an energy-capture-based NLOS identification method for LDR-UWB systems, based on the analysis of the characteristics of the channel impulse response (CIR). With this proposed energy capture method, the probability of successfully identifying NLOS is much improved than the existing methods, such as the kurtosis method, the strongest path compare method, etc. This NLOS identification method can be employed in adaptive modulation scheme to decrease bit error ratio (BER) level for certain signal-to-noise ratio (SNR). The BER performance with the adaptive modulation can be significantly enhanced by selecting proper modulation method with the knowledge of channel information from the proposed NLOS identification method.

현훈(어지럼증) 한의표준변증안 개발을 위한 전문가 델파이 조사 (Development of Standardized Pattern Identification for Dizziness by Delphi Method)

  • 오세희;정찬영;홍승욱
    • 한방안이비인후피부과학회지
    • /
    • 제33권2호
    • /
    • pp.43-54
    • /
    • 2020
  • Objectives : The goal of this study is developing standardized pattern identification of dizziness using delphi method. Methods : The pattern identification of dizziness which derived through literature review is studied by delphi method. A group of 9 experts of korean medicine participated in Delphi examination. Experts carried out evaluating and correcting the pattern identification and symptoms by e-mail. Results : Through 3 delphi examinations, final standardized pattern identification of dizziness was suggested. It consisted of 2 items of excess syndrome, 2 items of excess-deficiency combination syndrome, and 3 items of deficiency syndrome. Conclusions : By the delphi examinations among experts, a standardized pattern identification of dizziness was suggested. These pattern identification will contribute to research and treatment of korean medicine. Further study is necessary for modification of pattern identification by practical clinical use.

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.