• 제목/요약/키워드: Identification capability

검색결과 242건 처리시간 0.025초

An Investigation of the Visual-Mental Capability of Pre- and In-Service Mathematics Teachers: A Tale of Two Cones and One Cube

  • Barkai, Ruthi;Patkin, Dorit
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제18권1호
    • /
    • pp.41-54
    • /
    • 2014
  • This study investigated the visual-mental capability of pre-service and in-service mathematics teachers as well as academicians making a career change to mathematics teachers with regard to manipulations of two geometric shapes (from 2- to 3-dimensional). Moreover, it investigated whether there are differences between the visual-mental capability of these participant groups. Findings illustrate that most of the participants demonstrate an adequate visual capability relating to the task dealing with a cube. Conversely, very low percentage of participants manifested a visual-mental capability in a task requiring the identification of a solid resulting from rotation of a square page, whose diagonal serves as the rotation axis. The study indicates that learners' high visual view should be developed in order to enhance their visual-mental capability.

Post-processing Technique for Improving the Odor-identification Performance based on E-Nose System

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.368-372
    • /
    • 2015
  • In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.

Load and Mutual Inductance Identification Method for Series-Parallel Compensated IPT Systems

  • Chen, Long;Su, Yu-Gang;Zhao, Yu-Ming;Tang, Chun-Sen;Dai, Xin
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1545-1552
    • /
    • 2017
  • Identifying the load and mutual inductance is essential for improving the power transfer capability and power transfer efficiency of Inductive Power Transfer (IPT) systems. In this paper, a steady-state load and mutual inductance identification method focusing on series-parallel compensated IPT systems is proposed. The identification model is established according to the steady-state characteristics of the system. Furthermore, two sets of identification results are obtained, and then they are analyzed in detail to eliminate the untrue one. In addition, the identification method can be achieved without extra circuits so that it does not increase the complexity of the system or the control difficulty. Finally, the feasibility of the proposed method has been verified by simulation and experimental results.

An Empirical Study of Relationships among IT Capability, Trust, and Attitude on RFID Adoption in Korea

  • Lim, Se-Hun;Kim, Soh-Young;Kim, Jin-Soo
    • 디지털융복합연구
    • /
    • 제7권1호
    • /
    • pp.99-109
    • /
    • 2009
  • Recently, many enterprises are interest in implementing Radio Frequency IDentification (RFID). However, they have some difficulty in implementing RFID because of incompleteness of RFID technology and uncertainty of Return on Investment (ROI). Even though usefulness of RFID are recognized, many enterprises are just interested in planning of RFID rather than implementation of RFID. Among successful factors of RFID implementation, Information Technology (IT) capability is the most important one. If enterprises have systematic IT capability, it would make positive attitude to implement RFID. In addition, it will provide trust about RFID and promote adoption of RFID implementation. This study, therefore, empirically analyzed the relationships of trust, attitude, IT capability, and intention to RFID adoption using Partial Least Squares (PLS) approach. The result show useful guidelines and practical implication in implementing RFID.

  • PDF

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

Adaptive Modulation Method using Non-Line-of-Sight Identification Algorithm in LDR-UWB Systems

  • 마림천;황재호;최낙현;김재명
    • 한국통신학회논문지
    • /
    • 제33권12A호
    • /
    • pp.1177-1184
    • /
    • 2008
  • Non-line-of-sight (NLOS) propagation can severely weaken the accuracy of ranging and localization in wireless location systems. NLOS bias mitigation techniques have recently been proposed to relieve the NLOS effects, but positively rely on the capability to accurately distinguish between LOS and NLOS propagation scenarios. This paper proposes an energy-capture-based NLOS identification method for LDR-UWB systems, based on the analysis of the characteristics of the channel impulse response (CIR). With this proposed energy capture method, the probability of successfully identifying NLOS is much improved than the existing methods, such as the kurtosis method, the strongest path compare method, etc. This NLOS identification method can be employed in adaptive modulation scheme to decrease bit error ratio (BER) level for certain signal-to-noise ratio (SNR). The BER performance with the adaptive modulation can be significantly enhanced by selecting proper modulation method with the knowledge of channel information from the proposed NLOS identification method.

배전계통 복구능력 평가방안 및 응용 (A New Evaluation Methodology of Service Restoration Capability in Distribution Systems)

  • 임성일;진보건;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권7호
    • /
    • pp.333-340
    • /
    • 2002
  • To secure a service continuity is one of the most important mission in the ower distribution system operation. In this paper the necessary and sufficient condition to guarantee 100% service restoration capability for any fault on the system is reported. An evaluation methodology of the restoration capability(or restorability) is developed based on the developed restoration conditions. Applications of the developed concept to the system operation in the normal and emergency states, that would enhance the supply reliability of the system are described. They include enhancement of restoration capability adapting to load change, identification of best open switch and supervised switch positions.

System identification of a building structure using wireless MEMS and PZT sensors

  • Kim, Hongjin;Kim, Whajung;Kim, Boung-Yong;Hwang, Jae-Seung
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.191-209
    • /
    • 2008
  • A structural monitoring system based on cheap and wireless monitoring system is investigated in this paper. Due to low-cost and low power consumption, micro-electro-mechanical system (MEMS) is suitable for wireless monitoring and the use of MEMS and wireless communication can reduce system cost and simplify the installation for structural health monitoring. For system identification using wireless MEMS, a finite element (FE) model updating method through correlation with the initial analytical model of the structure to the measured one is used. The system identification using wireless MEMS is evaluated experimentally using a three storey frame model. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS estimates system parameters with reasonable accuracy. Another smart sensor considered in this paper for structural health monitoring is Lead Zirconate Titanate (PZT) which is a type of piezoelectric material. PZT patches have been applied for the health monitoring of structures owing to their simultaneous sensing/actuating capability. In this paper, the system identification for building structures by using PZT patches functioning as sensor only is presented. The FE model updating method is applied with the experimental data obtained using PZT patches, and the results are compared to ones obtained using wireless MEMS system. Results indicate that sensing by PZT patches yields reliable system identification results even though limited information is available.

FWLS 적응 알고리듬을 이용한 시변 볼테라 시스템 식별 (Adaptive Identification of a Time-varying Volterra system using the FWLS (filtered weighted least squares) Algorithm)

  • 안규영;정인석;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-6
    • /
    • 2004
  • In this paper, the problem of identifying a time-varying nonlinear system in an adaptive way was considered, whereby the time-varying second-order Volterra series was employed to model the system and the filtered weighted least squares (FWLS) algorithm was utilized for the fast parameter tracking capability with low computational burden. Finally, the performance of the proposed approach was demonstrated by providing some computer simulation results.

  • PDF

비선형성이 존재하는 동적 시스템의 식별과 제어 (Identification and control of dynamical system including nonlinearities)

  • 김규남;조규상;양태진;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.236-242
    • /
    • 1992
  • Multi-layered neural networks are applied to the identification and control of nonlinear dynamical system. Traditional adaptive control techniques can only deal with linear systems or some special nonlinear systems. A scheme for combining multi-layered neural networks with model reference network techniques has the capability to learn the nonlinearity and shows the great potential for adaptive control. In many interesting cases the system can be described by a nonlinear model in which the control input appears linearly. In this paper the identification of linear and nonlinear part are performed simultaneously. The projection algorithm and the new estimation method which uses the delta rule of neural network are compared throughout the simulation. The simulation results show that the identification and adaptive control schemes suggested are practically feasible and effective.

  • PDF