• 제목/요약/키워드: Identification algorithm

Search Result 1,888, Processing Time 0.039 seconds

Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index (최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chan;Oh, Sung-Kwun;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

An Experimental Application of Observer/controller Identification Algorithm to the System Identification of Inherently Unstable Systems

  • Park, Mun-Soo;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.4-63
    • /
    • 2002
  • $\textbullet$ Closed System Identification for inherently unstable systems $\textbullet$ Application of Observer/controller Identification (OCID) algorithm to those systems $\textbullet$ An open-loop system model with corresponding controller and observer gains are identified using OCID $\textbullet$ Experimental example of the OCID algorithm for an inverted pendulum system operating in closed-loop $\textbullet$ Modal analysis and time response to the added distrubance are presented to evaluate the performance of the OCID algorithm.

  • PDF

Determination of Vibration Parameters Using The Improved Time Domain Modal Identification Algorithm (개선된 시간영역 해석기법에 의한 동특성 추정)

  • Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • A new approach to conducting the vibration parameters identification algorithm is proposed. The approach employs the concept of modal amplitude ratio implemented in a mode shape estimation. The accuracy of the improved Ibrahim Time Domain identification algorithm in extracting structural modal parameters from free response functions has been studied using computer simulated data for 9 stations on the two-span continuous beam. Simulated responses from the lumped and distributed parameter system demonstrate that this algorithm produces excellent results, even in the 300% noise response.

  • PDF

Real-coded genetic algorithm for identification of time-delay process

  • Shin, Gang-Wook;Lee, Tae-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1645-1650
    • /
    • 2005
  • FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) process, which are used as the most useful process in industry, are difficult about process identification because of the long dead-time problem and the model mismatch problem. Thus, the accuracy of process identification is the most important problem in FOPDT and SOPDT process control. In this paper, we proposed the real-coded genetic algorithm for identification of FOPDT and SOPDT processes. The proposed method using real-coding genetic algorithm shows better performance characteristic comparing with the existing an area-based identification method and a directed identification method that use step-test responses. The proposed strategy obtained useful result through a number of simulation examples.

  • PDF

A New Approach to System Identification Using Hybrid Genetic Algorithm

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.6-107
    • /
    • 2001
  • Genetic alogorithm(GA) is a well-known global optimization algorithm. However, as the searching bounds grow wider., performance of local optimization deteriorates. In this paper, we propose a hybrid algorithm which integrates the gradient algorithm and GA so as to reinforce the performance of local optimization. We apply this algorithm to the system identification of second order RLC circuit. Identification results show that the proposed algorithm gets the better and robust performance to find the exact values of RLC elements.

  • PDF

Extending the SRIV Identification Algorithm to MIMO LMFD Models

  • Akroum, Mohamed;Hariche, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this paper the Simplified Refined Instrumental Variable (SRIV) identification algorithm for SISO systems is extended to MIMO systems described by a Left Matrix Fraction Description (LMFD). The performance of the extended algorithm is compared to the well-known MIMO four-step instrumental variable (IV4) algorithm. Monte Carlo simulations for different signal to noise ratios are conducted to assess the performance of the algorithm. Moreover, the algorithm is applied to a simulated quadruple tank process.

Query Tree Algorithm for Energy Conserving and Fast Identification in RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.311-315
    • /
    • 2007
  • This paper proposes a revised query tree algorithm in RFID systems. The proposed QT_ecfi algorithm revises the QT algorithm, which has a memory-less property. In the QT_ecfi algorithm, the tag will send the remaining bits of their identification codes when the query string matches the first bits of their identification codes. When the reader receives all the responses of the tags, it knows which bit is collided. If the collision occurs in the last bit, the reader can identify two tags simultaneously without further query. While the tags are sending their identification codes, if the reader detects a collision bit, it will send a signal to the tags to stop sending. According to the simulation results, the QT_ecfi algorithm outperforms the QT algorithm in terms of the number of queries and the number of response bits.

Identification of Bearing Dynamic Coefficients Using Optimization Techniques (최적화기법에 의한 베어링 동특성 계수의 규명)

  • 김용한;양보석;안영공;김영찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.