• Title/Summary/Keyword: Identification(or Recognition)

Search Result 221, Processing Time 0.031 seconds

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

Transformation Based Walking Speed Normalization for Gait Recognition

  • Kovac, Jure;Peer, Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2690-2701
    • /
    • 2013
  • Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometric can be captured at public places from a distance without subject's collaboration, awareness or even consent. Although current approaches give encouraging results, we are still far from effective use in practical applications. In general, methods set various constraints to circumvent the influence factors like changes of view, walking speed, capture environment, clothing, footwear, object carrying, that have negative impact on recognition results. In this paper we investigate the influence of walking speed variation to different visual based gait recognition approaches and propose normalization based on geometric transformations, which mitigates its influence on recognition results. With the evaluation on MoBo gait dataset we demonstrate the benefits of using such normalization in combination with different types of gait recognition approaches.

A Robust Speaker Identification Using Optimized Confidence and Modified HMM Decoder (최적화된 관측 신뢰도와 변형된 HMM 디코더를 이용한 잡음에 강인한 화자식별 시스템)

  • Tariquzzaman, Md.;Kim, Jin-Young;Na, Seung-Yu
    • MALSORI
    • /
    • no.64
    • /
    • pp.121-135
    • /
    • 2007
  • Speech signal is distorted by channel characteristics or additive noise and then the performances of speaker or speech recognition are severely degraded. To cope with the noise problem, we propose a modified HMM decoder algorithm using SNR-based observation confidence, which was successfully applied for GMM in speaker identification task. The modification is done by weighting observation probabilities with reliability values obtained from SNR. Also, we apply PSO (particle swarm optimization) method to the confidence function for maximizing the speaker identification performance. To evaluate our proposed method, we used the ETRI database for speaker recognition. The experimental results showed that the performance was definitely enhanced with the modified HMM decoder algorithm.

  • PDF

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.

Adaptive Cross-Device Gait Recognition Using a Mobile Accelerometer

  • Hoang, Thang;Nguyen, Thuc;Luong, Chuyen;Do, Son;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.333-348
    • /
    • 2013
  • Mobile authentication/identification has grown into a priority issue nowadays because of its existing outdated mechanisms, such as PINs or passwords. In this paper, we introduce gait recognition by using a mobile accelerometer as not only effective but also as an implicit identification model. Unlike previous works, the gait recognition only performs well with a particular mobile specification (e.g., a fixed sampling rate). Our work focuses on constructing a unique adaptive mechanism that could be independently deployed with the specification of mobile devices. To do this, the impact of the sampling rate on the preprocessing steps, such as noise elimination, data segmentation, and feature extraction, is examined in depth. Moreover, the degrees of agreement between the gait features that were extracted from two different mobiles, including both the Average Error Rate (AER) and Intra-class Correlation Coefficients (ICC), are assessed to evaluate the possibility of constructing a device-independent mechanism. We achieved the classification accuracy approximately $91.33{\pm}0.67%$ for both devices, which showed that it is feasible and reliable to construct adaptive cross-device gait recognition on a mobile phone.

3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots (이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식)

  • Gim Seong-Chan;Kim Jong-Man;Kim Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security (모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템)

  • Hong, Kyungho;Jung, Eunhwa
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.

Development of Adult Authentication System using Numeral Recognition (숫자인식을 이용한 성인인증기 개발)

  • 김갑순;박중조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.100-108
    • /
    • 2002
  • This paper describes the development of adult authentication system using numerical recognition. Nowadays, the automats are very popular and they are dealing in many item suck as coffee, soft drinks, alcoholic drinks and cigarettes, etc. Among these items, some are harmful to the minor, and so the sale of these to the minor must be prohibited. In relation to this, adult authentication system is required to be equipped to the automat which deals in items harmful to minor. According to these demands, we develop the adult authentication system. This system capture the image of a residence certificate card by the identification card-reader, and recognize its numbers and identify it as adult or minor by main computer, where numeral recognition is accomplished by using image processing methods and neural network recognizer. The characteristic test of the system is carried out, and its result reveals that the system has the error of less than 1%. Thus, It is thought that the system can be used for identifying adult in the automats.

The User Identification System Using Walking Pattern over the ubiFloor

  • Yun, Jae-Seok;Lee, Seung-Hun;Woo, Woon-Tack;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1046-1050
    • /
    • 2003
  • In general, conventional user identification systems require users to carry a TAG or badge or to remember ID and password. Though biometric identification systems may relieve these problems, they are susceptible to environmental noise to some degree. We propose a natural user identification system, ubiFloor, exploiting user's walking pattern to identify the user. The system identifies a user, while tracking the user's location, with a set of simple ON/OFF switch sensors or equipments. Experimental results show that the proposed system can recognize the registered users at the rate of 92%. Future improvement in recognition rate may be achieved by combining other sensors such as camera, microphone, etc.

  • PDF