• Title/Summary/Keyword: Idempotent

Search Result 150, Processing Time 0.02 seconds

The Order of Normal Form Generalized Hypersubstitutions of Type τ = (2)

  • Sudsanit, Sivaree;Leeratanavalee, Sorasak
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.501-509
    • /
    • 2014
  • In 2000, K. Denecke and K. Mahdavi showed that there are many idempotent elements in $Hyp_{N_{\varphi}}(V)$ the set of normal form hypersubstitutions of type ${\tau}=(2)$ which are not idempotent elements in Hyp(2) the set of all hypersubstitutions of type ${\tau}=(2)$. They considered in which varieties, idempotent elements of Hyp(2) are idempotent elements of $Hyp_{N_{\varphi}}(V)$. In this paper, we study the similar problems on the set of all generalized hypersubstitutions of type ${\tau}=(2)$ and the set of all normal form generalize hypersubstitutions of type ${\tau}=(2)$ and determine the order of normal form generalize hypersubstitutions of type ${\tau}=(2)$.

E-Inversive Γ-Semigroups

  • Sen, Mridul Kanti;Chattopadhyay, Sumanta
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.457-471
    • /
    • 2009
  • Let S = {a, b, c, ...} and ${\Gamma}$ = {${\alpha}$, ${\beta}$, ${\gamma}$, ...} be two nonempty sets. S is called a ${\Gamma}$-semigroup if $a{\alpha}b{\in}S$, for all ${\alpha}{\in}{\Gamma}$ and a, b ${\in}$ S and $(a{\alpha}b){\beta}c=a{\alpha}(b{\beta}c)$, for all a, b, c ${\in}$ S and for all ${\alpha}$, ${\beta}$ ${\in}$ ${\Gamma}$. An element $e{\in}S$ is said to be an ${\alpha}$-idempotent for some ${\alpha}{\in}{\Gamma}$ if $e{\alpha}e$ = e. A ${\Gamma}$-semigroup S is called an E-inversive ${\Gamma}$-semigroup if for each $a{\in}S$ there exist $x{\in}S$ and ${\alpha}{\in}{\Gamma}$ such that a${\alpha}$x is a ${\beta}$-idempotent for some ${\beta}{\in}{\Gamma}$. A ${\Gamma}$-semigroup is called a right E-${\Gamma}$-semigroup if for each ${\alpha}$-idempotent e and ${\beta}$-idempotent f, $e{\alpha}$ is a ${\beta}$-idempotent. In this paper we investigate different properties of E-inversive ${\Gamma}$-semigroup and right E-${\Gamma}$-semigroup.

ON REFLEXIVE PRINCIPALLY QUASI-BAER RINGS

  • Kim, Jin Yong
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.233-236
    • /
    • 2009
  • We investigate in this paper some equivalent conditions for right principally quasi-Baer rings to be reflexive. Using these results we are able to prove that if R is a reflexive right principally quasi-Baer ring then R is a left principally quasi-Baer ring. In addition, for an idempotent reflexive principally quasi-Baer ring R we show that R is prime if and only if R is torsion free.

  • PDF

On Regular Γ-semihyperrings and Idempotent 𝚪-semihyperrings

  • Pawar, Kishor Fakira;Patil, Jitendra Jaysing;Davvaz, Bijan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.35-45
    • /
    • 2019
  • The ${\Gamma}$-semihyperring is a generalization of the concepts of a semiring, a semihyperring and a ${\Gamma}$-semiring. Here, the notions of (strongly) regular ${\Gamma}$-semihyperring, idempotent ${\Gamma}$-semihyperring; invertible set, invertible element in a ${\Gamma}$-semihyperring are introduced, and several examples given. It is proved that if all subsets of ${\Gamma}$-semihyperring are strongly regular then for every ${\Delta}{\subseteq}{\Gamma}$, there is a ${\Delta}$-idempotent subset of R. Regularity conditions of ${\Gamma}$-semihyperrings in terms of ideals of ${\Gamma}$-semihyperrings are also characterized.

RINGS IN WHICH EVERY SEMICENTRAL IDEMPOTENT IS CENTRAL

  • Muhammad Saad
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • The RIP of rings was introduced by Kwak and Lee as a generalization of the one-sided idempotent-reflexivity property. In this study, we focus on rings in which all one-sided semicentral idempotents are central, and we refer to them as quasi-Abelian rings, extending the concept introduced by RIP. We establish that quasi-Abelianity extends to various types of rings, including polynomial rings, power series rings, Laurent series rings, matrices, and certain subrings of triangular matrix rings. Furthermore, we provide comprehensive proofs for several results that hold for RIP and are also satisfied by the quasi-Abelian property. Additionally, we investigate the structural properties of minimal non-Abelian quasi-Abelian rings.

Automorphisms of Lotka-Volterra algebras

  • Yoon, Suk-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The purpose of this paper is to give a characterization of automorphisms of the weighted Lotka-Volterra algebra $(A,\omega)$ at idempotent elements and to offer a condition that $(A,\omege)$ becomes a Jordan algebra.

  • PDF

ON THE m-POTENT RANKS OF CERTAIN SEMIGROUPS OF ORIENTATION PRESERVING TRANSFORMATIONS

  • Zhao, Ping;You, Taijie;Hu, Huabi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1841-1850
    • /
    • 2014
  • It is known that the ranks of the semigroups $\mathcal{SOP}_n$, $\mathcal{SPOP}_n$ and $\mathcal{SSPOP}_n$ (the semigroups of orientation preserving singular self-maps, partial and strictly partial transformations on $X_n={1,2,{\ldots},n}$, respectively) are n, 2n and n + 1, respectively. The idempotent rank, defined as the smallest number of idempotent generating set, of $\mathcal{SOP}_n$ and $\mathcal{SSPOP}_n$ are the same value as the rank, respectively. Idempotent can be seen as a special case (with m = 1) of m-potent. In this paper, we investigate the m-potent ranks, defined as the smallest number of m-potent generating set, of the semigroups $\mathcal{SOP}_n$, $\mathcal{SPOP}_n$ and $\mathcal{SSPOP}_n$. Firstly, we characterize the structure of the minimal generating sets of $\mathcal{SOP}_n$. As applications, we obtain that the number of distinct minimal generating sets is $(n-1)^nn!$. Secondly, we show that, for $1{\leq}m{\leq}n-1$, the m-potent ranks of the semigroups $\mathcal{SOP}_n$ and $\mathcal{SPOP}_n$ are also n and 2n, respectively. Finally, we find that the 2-potent rank of $\mathcal{SSPOP}_n$ is n + 1.