• Title/Summary/Keyword: Ideal gas equation

Search Result 52, Processing Time 0.022 seconds

The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring (고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증)

  • Han, Insik;Choi, Kyojun;Kim, Jaeyong;Lee, Yoonbok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

Performance Analysis of a Reciprocating Compressor Using a Real Gas Equation of State (실제기체 상태방정식을 이용한 왕복동압축기의 성능해석)

  • Kim, J.W.;Kim, H.J.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 1992
  • This paper addresses performance analysis of a reciprocating compressor. A computer simulation model has been developed to predict and estimate the compressor performance. Instead of using ideal gas equations, real gas equations are used in describing the state of gas. The compressor simulation model consists of a cylinder control volume, suction system and discharge system. Conservation laws of mass and energy are applied to the cylinder section only, The suction and discharge system are described by the Helmholtz resonator modeling. Some of input data required for the simulation have been obtained from experiments. These experimentally obtained input data are effective flow area, effective force area and dynamic characteristics of valves. Simulation results of real gas equations have been compared with those of ideal gas equations. It has been found that the simulation with real gas equations yields lower cylinder temperature and heat transfer compared with those of ideal gas equations. Differences in pressure, mass flowrates, valve motions and gas pulsations are found quite small.

  • PDF

A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement (고압수소 유량계측용 임계노즐 유동의 수치해석적 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

Analysis of Cold Gas Flow in Puffer Type GCB Considering the Real Gas Property of $SF_6$ ($SF_6$ 가스의 실제 기체특성을 고려한 파퍼식 가스차단기 내의 냉가스 유동해석)

  • 김홍규;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • To analyze the performance of the gas circuit breaker(GCB), the flow field variables such as temperature, pressure and density should be evaluated accurately In the puffer chamber of puffer type GCB, the pressure rise may Exceed 20 bar and in this range of high pressure, $SF_6$ gas deviates the ideal gas property. Therefore, the real gas property of $SF_6$ should be taken into consideration for the accurate analysis of flow field. This paper presents the analysis technique of cold gas flow in GCB employing the real gas state equation of SF6. The FVFLIC method is Employed to solve the axisymmetric Euler equation. To reduce the computational effort of real gas state equation, the relationship between density and pressure is approximated by the polynomial at the temperature of 300K. The proposed method is applied to the test GCB model and simulation results show good agreement with the experimental ones.

A Comparative Study of Single Component Thermophysical Properties using the Real Gas Equation of State at Supercritical Conditions (초임계 영역에서 실제 기체 상태 방정식에 따른 단일 성분의 열역학적 상태량 비교 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Kim, Jong-Chan;Koo, Ja-Ye;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.39-51
    • /
    • 2010
  • Theoritical principles about the real gas equation of state are investigated and comparisons for the thermophysical properties of oxygen, hydrogen, and methane as the propellants of liquid rocket engine are carried out for the various conditions of pressure and temperature including supercritical conditions. The properties obtained using the real gas equation of state(Soave modification of Redlich-Kwong, Peng-Robinson equation of state, and extended corresponding states principle) have been compared with the results of applying the ideal gas equation of state. Differences of thermophysical properties among the models specifically at the liquid phase regime and their error ranges are addressed.

Effect of Geometric Parameters on the Performance of an Automotive Scroll Compressor Using R-134a (R-134a를 사용한 자동차용 스크롤 압축기의 스크롤 형상변화가 성능에 미치는 영향)

  • Lee, Geonho;Kim, Haksoo;Cho, Keumnam;Yoo, Jungyul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1635-1646
    • /
    • 1998
  • The present study investigated the effects of geometric parameters considered on the performance of an automotive scroll compressor by assuming ideal, semi-real and real gases for R-134a. The geometric parameters were center thickness of scroll, height of scroll and the size of discharge port. Fourth-order Runge-Kutta method was applied to solve the thermodynamic equations, leaking rate equation and the equation of motion of discharge valve for ideal, semi-real, and real gases. The volumetric and adiabatic efficiencies for semi-real and real gases differed little, but those for ideal gas differed by 18% and 25% compared with those for real gas at 2,000rpm. The volumetric efficiency changed little as the design angle of scroll (${\gamma}$) changed, but the adiabatic efficiency at ${\gamma}$ of $34^{\circ}$ was higher by 2.4% than that of $147^{\circ}$ for 2,000rpm. The volumetric and adiabatic efficiencies at scroll height of 29.8mm were higher by 1.7% and 2.8% than those of 65.8mm. The volumetric efficiency changed little as the size of discharge port changed, but the adiabatic efficiency increased a little as the size of discharge port decreased.

A Numerical Study on Particle Deposition onto a Heated Semiconductor Wafer in Vacuum Environment (진공 환경에서 가열되는 반도체 웨이퍼로의 입자 침착에 관한 수치해석적 연구)

  • Park, Su-Bin;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2018
  • Numerical analysis was conducted to characterize particle deposition onto a heated horizontal semiconductor wafer in vacuum environment. In order to calculate the properties of gas surrounding the wafer, the gas was assumed to obey the ideal gas law. Particle transport mechanisms considered in the present study were convection, Brownian diffusion, gravitational settling and thermophoresis. Averaged particle deposition velocities on the upper surface of the wafer were calculated with respect to particle size, based on the numerical results from the particle concentration equation in the Eulerian frame of reference. The deposition velocities were obtained for system pressures of 1000 Pa~1 atm, wafer heating of 0~5 K and particle sizes of $2{\sim}10^4nm$. The present numerical results showed good agreement with the available experimental ones.

A Calculation of 1 Dimensional Blasting Pressure Uslng the Flux-Corrected Transport Algorithm (Flux-Corrected Transport Algorithm을 적용한 1차원 발파압력산정에 관한 연구)

  • 김문겸;오금호;이필규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.76-83
    • /
    • 1995
  • Estimation of blasting behavior of explosives is prerequisite in the numerical analysis of blasting works. In this study, blasting pressure is estimated by the finite difference method using the Flux-Corrected Transport Algorithm. To formulate the behavior of blasting gas, the mass conservation equation, the moment conservation equation, the energy conservation equation and the ideal gas state equation are used. The simplified species conservation equation is included to simulate the behavior of reacting explosives. To verify the calculation, the Sod's shock tube problem, the strong shock problem and the reacting problem we used. Numerical results show that the shock wave can be captured by means of the FCT algorithm in the reacting and nonreacting states.

  • PDF

Analysis of the Dynamic Characteristics of the In-Arm Type Hydropneumatic Suspension Unit (암 내장형 유기압 현수장치의 동특성 해석)

  • Lee, H.W.;Jo, J.R.;Lee, J.K.;Jang, M.S.;An, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.519-524
    • /
    • 2003
  • In this paper we discuss the dynamic characteristics of the in-arm type hydropneumatic suspension unit(ISU). For this, two accurate models are introduced. The first one is the Benedict-Webb-Rubin equation which is adopted for the spring behavior of a real gas. This equation is applicable for the high pressure of the nitrogen gas which acts as a spring in ISU system. The second one describes the behavior of a damper, which is divided into four parts - jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. This approach gives a good approximation of the real damper system. For the comparison purpose, the numerical results of the dynamic behavior of ISU system using a real gas and an ideal gas are given in the paper.

  • PDF