• Title/Summary/Keyword: Ideal gas

Search Result 260, Processing Time 0.028 seconds

The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring (고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증)

  • Han, Insik;Choi, Kyojun;Kim, Jaeyong;Lee, Yoonbok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.

Thermal Losses Due to Non-ideal Gas Behavior of Helium in VM Heat Pumps (헬륨의 비이상기체 거동에 따른 VM열펌프의 손실)

  • Baik, J.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.279-287
    • /
    • 1996
  • A cycle analysis is performed to investigate how the non-ideal gas behavior of helium reduces the heating capacity of VM heat pumps. Since the operating pressures of VM heat pumps are as high as 1 to 20 MPa, the compressibility factor of helium becomes clearly greater than 1 and the non-ideal behavior always represents a thermal loss in heating. To calculate the amount of the losses, an adiabatic cycle analysis is performed with the real properties of helium and the net enthaply flows through the two regenerators are numerically obtained. It is shown that the non-ideal gas losses could be as much as 8% in the heating capacity when the operating pressures are greater than 10MPa. The effects of the operating temperatures and the dead volumes on the loss are presented.

  • PDF

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement (고압수소 유량계측용 임계노즐 유동의 수치해석적 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

Performance Analysis of a Reciprocating Compressor Using a Real Gas Equation of State (실제기체 상태방정식을 이용한 왕복동압축기의 성능해석)

  • Kim, J.W.;Kim, H.J.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 1992
  • This paper addresses performance analysis of a reciprocating compressor. A computer simulation model has been developed to predict and estimate the compressor performance. Instead of using ideal gas equations, real gas equations are used in describing the state of gas. The compressor simulation model consists of a cylinder control volume, suction system and discharge system. Conservation laws of mass and energy are applied to the cylinder section only, The suction and discharge system are described by the Helmholtz resonator modeling. Some of input data required for the simulation have been obtained from experiments. These experimentally obtained input data are effective flow area, effective force area and dynamic characteristics of valves. Simulation results of real gas equations have been compared with those of ideal gas equations. It has been found that the simulation with real gas equations yields lower cylinder temperature and heat transfer compared with those of ideal gas equations. Differences in pressure, mass flowrates, valve motions and gas pulsations are found quite small.

  • PDF

A Numerical Study on Particle Deposition onto a Heated Semiconductor Wafer in Vacuum Environment (진공 환경에서 가열되는 반도체 웨이퍼로의 입자 침착에 관한 수치해석적 연구)

  • Park, Su-Bin;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2018
  • Numerical analysis was conducted to characterize particle deposition onto a heated horizontal semiconductor wafer in vacuum environment. In order to calculate the properties of gas surrounding the wafer, the gas was assumed to obey the ideal gas law. Particle transport mechanisms considered in the present study were convection, Brownian diffusion, gravitational settling and thermophoresis. Averaged particle deposition velocities on the upper surface of the wafer were calculated with respect to particle size, based on the numerical results from the particle concentration equation in the Eulerian frame of reference. The deposition velocities were obtained for system pressures of 1000 Pa~1 atm, wafer heating of 0~5 K and particle sizes of $2{\sim}10^4nm$. The present numerical results showed good agreement with the available experimental ones.

Performance Analysis of Regenerative Gas Turbine System with Afterfogging (압축기 출구 물분사가 있는 재생 가스터빈 시스템의 성능해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.448-455
    • /
    • 2009
  • A performance analysis of the regenerative gas turbine system with afterfogging is carried out. Because of the high temperature at the outlet of air compressor, afterfogging has a potential of improved recuperation of exhaust heat than inlet fogging. Thermodynamic analysis model of the gas turbine system is developed by using an ideal gas assumption. Using the model, the effects of pressure ratio, water injection ratio, and ambient temperature are investigated parametrically on thermal efficiency and specific power of the cycle. The dependency of pressure ratio giving peak thermal efficiency is also investigated. The results of numerical computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of thermal efficiency and specific power. In addition, the peak thermal efficiency is shown to decrease almost linearly with ambient temperature.

Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment (진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석)

  • Yoo, Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

A Study on the Characteristics of Mixed Combustion for Hydrox Gas (Hydrox Gas 혼합연소특성 에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.230-234
    • /
    • 2010
  • Hydrox gas which is the mixed gas of hydrogen and oxygen gained fromwater electrolysis is one of the new clean energy sources and thus is researched and commercialized actively. Especially, it can be replaced the fossil energy and shows the better quality compared to the conventional energy such as LPG or acetylene gas. The mixed gas of hydrogen and oxygen is gained from water electrolysis reaction. It has constant volume ratio 2:1 of hydrogen and oxygen, and it is used as a source of thermal energy by combustion reaction. Further, hydrox gas is nearly a mixed ideal gas combusting itself completely and its combustion shows anunique characteristics of implosion. In this study, temperature rise effects on hydrox gas content through mixed combustion test of kerosene and hydrox gas and LPG and hydrox gas are investigated. it is also confirmed that economy of mixed combustion of hydrox gas as effective energy is fairly probable.

Effect of Geometric Parameters on the Performance of an Automotive Scroll Compressor Using R-134a (R-134a를 사용한 자동차용 스크롤 압축기의 스크롤 형상변화가 성능에 미치는 영향)

  • Lee, Geonho;Kim, Haksoo;Cho, Keumnam;Yoo, Jungyul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1635-1646
    • /
    • 1998
  • The present study investigated the effects of geometric parameters considered on the performance of an automotive scroll compressor by assuming ideal, semi-real and real gases for R-134a. The geometric parameters were center thickness of scroll, height of scroll and the size of discharge port. Fourth-order Runge-Kutta method was applied to solve the thermodynamic equations, leaking rate equation and the equation of motion of discharge valve for ideal, semi-real, and real gases. The volumetric and adiabatic efficiencies for semi-real and real gases differed little, but those for ideal gas differed by 18% and 25% compared with those for real gas at 2,000rpm. The volumetric efficiency changed little as the design angle of scroll (${\gamma}$) changed, but the adiabatic efficiency at ${\gamma}$ of $34^{\circ}$ was higher by 2.4% than that of $147^{\circ}$ for 2,000rpm. The volumetric and adiabatic efficiencies at scroll height of 29.8mm were higher by 1.7% and 2.8% than those of 65.8mm. The volumetric efficiency changed little as the size of discharge port changed, but the adiabatic efficiency increased a little as the size of discharge port decreased.