• Title/Summary/Keyword: Ideal Jansen trajectory

Search Result 3, Processing Time 0.018 seconds

Optimized design of Jansen mechanism based on target trajectory tracking method using multi-objective genetic algorithm (Multi-objective Genetic Algorithm 을 이용한 얀센 메커니즘의 목표 궤적 트래킹 기반 최적 설계)

  • Heo, Joon;Hur, Youngkun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.455-462
    • /
    • 2016
  • Recently, followed by rapid growth of robotics field, multi-linkage mechanism which can even pass by rough road is getting lots of attention. In this paper, I focused on Jansen mechanism. It's a kinematics object which is named after Dutch artist Theo jansen. Jansen mechanism embraces structure and mechanism which creates locomotion with the combination of the power and simple structure. Theo jansen suggests a 'Holy number'. It's an ideal ratio of leg components length. However, if there's desired gait locomotion, you have to adjust the ratio and the length. But even slight change of the length could cause a big change at the end-point. To solve this problem, I suggest a reverse engineering method to get a ratio of each links by nonlinear optimization with pre-set desired trajectory. First, we converted a movement of the joint of Jansen mechanism to vectors by kinematics analysis of multi-linkage structure. And we showed the trajectory at the end-point. After that, we set desired trajectory which we found most ideal. Then we got the length of the leg components which draws a trajectory as same as trajectory we set, using Multi-objective genetic algorithm toolbox in MATLAB. Result is verified by Edison designer and mSketch. And we analyzed if it could pass through the obstruction which is set dynamically.

  • PDF

Optimized design of walking device based on Theo Jansen Mechanism for securing stability and speed (Theo Jansen Mechanism 기반 보행 기구의 최적 설계를 통한 구동의 안정성 및 속도 확보)

  • Kim, KyungHoon;Kim, SeungYeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.513-515
    • /
    • 2016
  • There are various walking devices based on Theo Jansen mechanism. And these systems controlled by complicate equations. So we decided to optimize the design of walking device with two points of view. The device is required to ensure stability while maintaining the high speed. To simplify the control system, we applied trigonometric ratio with ideal Jansen trajectory. As a result, we were able to draw the connection between height of barrier and Ground Length (GL). Also we could change traveling distance and Ground Angle Coefficient (GAC) by shifting the position of the joints. Through controlling these parameter, we can analyze stability and speed of the device. Ultimately, we develop the device that can walk more efficiently by the optimization process.

  • PDF

Optimization on Working Trajectory of a Quadruped Robot Based on Jansen Mechanism (얀센 메커니즘 기반의 4 족 로봇의 보행 궤적의 최적화)

  • Bae, JoonSeok;Yu, SeongMin;Kim, MinJun;Jeong, EunSik;Han, SangMin;Hwang, WooJung;Choi, JaeNeung;Lee, ChoonYeol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.397-403
    • /
    • 2016
  • Various walking robot platforms have been developed to carry out missions such as explorations, pass of obstacle or inspections of dangerous environments. In this work, a four legs mechanism based on Jansen mechanism is developed, which can follow a certain track and overcome obstacles. To find the ideal locus, computer programs are used such as M. sketch and Working model. Using these program tools, moderate linkage sizes are selected in Science Box. Furthermore, in order to optimize design of legs, a level average analysis is used as well as Edison S/W. Through the design optimization, improved stride of locus is found.

  • PDF