• Title/Summary/Keyword: Icosahedral phase

Search Result 15, Processing Time 0.016 seconds

The Effect of Ca Addition on Creep Behavior of As-cast Mg-8.0Zn-1.6Y Alloys with Icosahedral Phase (Icosahedral 상을 갖는 Mg-8Zn-1.6Y 합금의 크리프 거동에 미치는 Ca 첨가 영향)

  • Jung, Young-Gil;Yang, Wonseok;Kim, Shae K.;Lim, Hyunkyu;Oh, Gun-Young;Kim, Youngkyun;Kim, Do Hyang
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.7-15
    • /
    • 2020
  • The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase in the Ca content, indicating that an addition of Ca enhances the ignition resistance of the Mg-Zn-Y alloy. The as-cast microstructures of all tested alloys mainly consisted of the dendritic α-Mg matrix and I-phase (Mg3Zn6Y) at the grain boundaries. In the Ca-added Mg-8.0Zn-1.6Y alloys, the Ca2Mg6Zn3 phase forms, with this phase fraction increasing with an increase in the Ca contents. However, a high volume fraction of the Ca2Mg6Zn3 phase rather deteriorates the mechanical properties. Therefore, a moderate amount of Ca element in Mg-8.0Zn-1.6Y alloys is effective for improving the tensile and creep properties of the Mg-Zn-Y alloy. The Mg-8.0Zn-1.6Y-0.3Ca alloy exhibits the highest tensile strength and the lowest creep strain among the alloys investigated in the present study. The creep resistance of Mg-Zn-Y-Ca alloys depends on the selection of the secondary solidification phase; i.e., when Ca2Mg6Zn3 forms in an alloy containing a high level of Ca, the creep resistance deteriorates because Ca2Mg6Zn3 is less stable than the I-phase at a high temperature.

Effect of calcium addition on creep properties in Mg-Zn-Y alloys (Mg-Zn-Y 합금의 크리프 저항성에 미치는 칼슘의 영향)

  • Lee, Yoon-Hee;Lim, Hyun-Kyu;Kim, Do-Hyung;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.198-202
    • /
    • 2007
  • In the present study, the high temperature mechanical properties and creep resistance of Mg-Zn-Y-Ca alloys has been investigated. The Mg-4Zn-0.8Y alloy consists of ${\alpha}$-Mg matrix and icosahedral quasicrystalline phase. Calcium addition into Mg-4n-0.8Y based alloy results in the formation of ${\tau}(Ca_{2}Mg_{6}Zn_{3})$ and $Mg_{2}Ca$ as the second solidification phases. Creep properties of the Mg-Zn-Y and Mg-Zn-Ca based alloys measured at applied stresses between 65 MPa and 85 MPa are significantly improved with adding calcium and yttrium, respectively. The improved creep resistance is due to the formation of thermally stable $Mg_{2}Ca$ phase.

Extrusion Behavior of Gas Atomized Mg Alloy Powders (가스분무 Mg-Zn-Y 합금분말의 압출거동)

  • Chae, Hong-Jun;Kim, Young-Do;Lee, Jin-Kyu;Kim, Jeong-Gon;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.251-255
    • /
    • 2007
  • This work is to report not only the effect of rapid solidification of $MgZn_{4.3}Y_{0.7}$ alloys on the micro-structure, but also the extrusion behavior on the materials properties. The average grain size of the atomized powders was about $3-4{\mu}m$. The alloy powders of $Mg_{97}Zn_{4.3}Y_{0.7}$, consisted of I-Phase (Icosahedral, $Mg_{3}Zn_{6}Y_{1}$) as well as Cubic structured W-Phase ($Mg_{3}Zn_{3}Y_{2}$), which was finely distributed within ${\alpha}-Mg$ matrix. The oxide layer formed along the Mg surface was about 48 nm in thickness. In order to study the consolidation behavior of Mg alloy powders, extrusion was carried out with the area reduction ratio of 10:1 to 20:1. As the ratio increased, fully deformed and homogeneous microstructure could be obtained, and the mechanical properties such as tensile strength and elongation were simultaneously increased.

Study on Castability and Creep Properties of Mg-Zn-Y-X (X=Al or Mm) Alloys as Casting Alloy (주조용 합금으로서 Mg-Y-X (X=Al or Mm) 합금의 주조성 및 크리프 성질에 관한 연구)

  • Lim, Hyun-Kyu;Lee, Ju-Youn;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In the present study, the possibility of Mg-Zn-Y alloys as high temperature casting alloys has been investigated. The fluidity of alloys containing yttrium were better than that of commercial AZ91 alloy because the oxide layer on the surface reduced the reaction between melt, and air and mold, which would reduce the resistance during the process of filling the mold. However, this oxide film reduced the hot-tearing resistance. In the case of ZAW942, this alloy exhibited fluidity and hot-tearing resistance better than AZ91 alloy. Because of thermally stable quasicrystal and other phases obstructed the movement of grains, the creep resistance of alloys containing rare earth elements more than 2 wt% was better than that of AZ91 alloy.

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young;Park, Sung Hyun;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1256-1261
    • /
    • 2018
  • Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.