• Title/Summary/Keyword: Ice-pull out strength

Search Result 2, Processing Time 0.015 seconds

Characteristics of Asphalt Concrete Mixed with Polyethylene Aggregate (폐비닐 골재 혼합 아스콘의 성질)

  • Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.5-11
    • /
    • 2017
  • The 19 mm-sized aggregate was produced by melting vinyl waste (waste polyethylene film) generated from vinyl greenhouses in rural areas. It was mixed with As'cone at various weight ratios, and then insulation effect test, tension test after repeated freezing and thawing, ice pull-out strength test and field density test were conducted for the mixtures. These results demonstrated that as the mixing ratio of polyethylene aggregate increased, the insulation effect increased, due to the many pore spaces that existed in the polyethylene aggregate. After repeatedly freezing and thawing As'cone, the tensile strength significantly increased at 2.5% of the polyethylene aggregate content rather than 0% of polyethylene aggregate content but it also slightly decreased at 5% and 10% of polyethylene aggregate content in comparison to 2.5% of its polyethylene aggregate content. As'cone added with polyethylene aggregate by 2.5% resulted in lower ice pull-out strength than that of normal As'cone. As a result of the porosity test for the samples taken at the site, porosity of the As'cone, which added polyethylene aggregate, was smaller than that of the general As'cone.

Study on the procedure to obtain an attainable speed in pack ice

  • Kim, Hyun Soo;Jeong, Seong-Yeob;Woo, Sun-Hong;Han, Donghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.491-498
    • /
    • 2018
  • The cost evaluation for voyage route planning in an ice-covered sea is one of the major topics among ship owners. Information of the ice properties, such as ice type, concentration of ice, ice thickness, strength of ice, and speed-power relation under ice conditions are important for determining the optimal route in ice and low operational cost perspective. To determine achievable speed at any designated pack ice condition, a model test of resistance, self-propulsion, and overload test in ice and ice-free water were carried out in a KRISO ice tank and towing tank. The available net thrust for ice and an estimation of the ice resistance under any pack ice condition were also performed by I-RES. The in-house code called 'I-RES', which is an ice resistance estimation tool that applies an empirical formula, was modified for the pack ice module in this study. Careful observations of underwater videos of the ice model test made it possible to understand the physical phenomena of underneath of the hull bottom surface and determine the coverage of buoyancy. The clearing resistance of ice can be calculated by subtracting the buoyance and open water resistance form the pre-sawn ice resistance. The model test results in pack ice were compared with the calculation results to obtain a correlation factor among the pack ice resistance, ice concentration, and ship speed. The resulting correlation factors were applied to the calculation results to determine the pack ice resistance under any pack ice condition. The pack ice resistance under the arbitrary pack ice condition could be estimated because software I-RES could control all the ice properties. The available net thrust in ice, which is the over thrust that overcomes the pack ice resistance, will change the speed of a ship according to the bollard pull test results and thruster characteristics (engine & propulsion combination). The attainable speed at a certain ice concentration of pack ice was determined using the interpolation method. This paper reports a procedure to determine the attainable speed in pack ice and the sample calculation using the Araon vessel was performed to confirm the entire process. A more detailed description of the determination of the attainable speed is described. The attainable speed in 1.0 m, 90% pack ice and 540 kPa strength was 13.3 knots.