• 제목/요약/키워드: Ice wall

검색결과 57건 처리시간 0.022초

빙축열 시스템에서의 코일 휜의 열전달 촉진 효과에 관한 실험적 연구 (An Experimental Study on tee Heat Transfer Enhancement Effect of the Coil Fins for Ice Storage System)

  • 성병호;이분희;임광빈;김철주
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.219-224
    • /
    • 2004
  • The present study was to investigate the heat transfer enhancement effect of coil wire fins in an ice storage system. For the two cases of tubes with internal brine flows, a finned tube with coil wires on its outer surface and a smooth tube, the rates of ice layer were tested and compared for both the icing processes. The coil fins were made of a stainless steel wire with a dia. of 2.0(mm), and the coil had an outer dia. of 10(mm) and a helix angle of 60($^{\circ}$). The experimental results showed that the coil fins could substantially reduce the thermal resistance of the ice layer, and enhance the heat flow rates between the water in the storage tank and the brine. The ice storing time was found to be shortened by 13(%) for the coil fins to get the same amount of ice layer that was built on the smooth tube wall for 10 hours of operation when the same thermal conditions were provided.

  • PDF

실내 빙상장 및 부대시설에 데시칸트 제습기 적용 (Application of Desiccant Dehumidifier on Ice-rink and Subsidiary Facilities)

  • 박승태;방영석;최세영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.533-538
    • /
    • 2005
  • The number of domestic ice-rink is little by little increasing recently. Therefore, the demand for air-conditioning system to adjust adequately the indoor condition of ice-rink is constantly increasing. But, if air-conditioning system for ice-rink isn't designed properly, the problems such as fogging, ice surface condensation, structural deterioration, odors, generation of dew condensation on the surface of a wall occur. The solutions for these problems are to lower the relative humidify of indoor. The objectives of this paper is to apply of desiccant dehumidifier on ice-rink, solve these problems.

  • PDF

수평 2열 원통관 주위의 동결형상에 관한 연구 (Experimental Study for Ice Formation around Two Horizontal Circular Tubes)

  • 윤정인;김재돌;도요후미 카토;오후규
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.89-97
    • /
    • 1995
  • Experimental study was performed for free convection and ice formation around two horizontal circular tubes which were placed vertically. Temperature and velocity distributions were visualized with real time holographic interferometry technique and tracer method. When water was cooled, super cooled region was formed around cooling pipe. It was found that flow induced by free convection always directed downwards when the coolant temperature was low, while it directed upwards when the coolant temperature was comparably high though it directed downwards initially. Flow phenomena with free convection were investigated in detail with varying cooling rate and length between cooling pipes. And growing process of dense ice was also investigated. Dendritic ice is suddenly formed within a supercooled region, and a dense ice layer begins to develop from the cooling wall.

  • PDF

수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구 (Melting of Ice Inside a Horizontal Cylinder under the Volume Change)

  • 조남철;김동춘;이채탈;임장순
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

빙-구조물 상호작용의 동적거동해석 (Prediction of Dynamic Behavior of Ice-Structure Interaction Process)

  • 임채환;이종원;신병천
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.87-96
    • /
    • 1996
  • 평탄빙과 수직구조물이 상호작용 하는 경우의 구조물의 동적거동과 빙하중 추정을 하였다. 구조물의 형태는 수직구조물이고 얼음의 파괴형태는 분쇄파괴로 가정하였다. 평탄빙은 구조물과 접촉하여 분쇄파괴가 일어나는 접촉부위와 탄성변형을 하는 외곽부위로 나누었으며, 구조물은 스프링-질량-감쇄로 구성된 1자유도계로 치환하였다. 강성이 큰 구조물과 작은 구조물에 대하여 제시된 모델에 의한 계산결과와 실험결과를 비교하였다. 비교결과는 본 모델이 빙하중과 구조물의 거동추정을 정도있게 할 수 있다는 것을 보여주었다.

  • PDF

수평원관내 얼음의 접촉융해과정 (Close-contact melting of ice in a horizontal cylinder)

  • 서정세;노승탁
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

사각형 용기내 물의 하부면 냉각에 의한 동결거동에 관한 연구 (Water Freezing Behavior in a Rectangular Vessel Cooled from Below Direction)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.443-450
    • /
    • 2009
  • This study has dealt with the ice making characteristics in a rectangular vessel cooled from below direction with experiment and numerical analysis. The experiment and numerical analysis were carried out under the following conditions which are the cooling wall temperatures of -5[$^{\circ}C$], -10[$^{\circ}C$], and -15[$^{\circ}C$]. The temperature profile of non-frozen layer was calculated by numerical analysis as the form of non-dimensional temperature. From this study, it is cleared that the existence of natural convection is clearly known. And also the non-dimensional freezing amount was derived from experimental result. This correlation equation will give a useful information to the designers of ice making system.

LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I) (A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I))

  • 김우석;박정철;박심수;유재석;이종화
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법 (A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.