• Title/Summary/Keyword: Ice transit model

Search Result 4, Processing Time 0.018 seconds

Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

  • Nam, Jong-Ho;Park, Inha;Lee, Ho Jin;Kwon, Mi Ok;Choi, Kyungsik;Seo, Young-Kyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.210-226
    • /
    • 2013
  • Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

The Northern Sea Route Transit Modeling of Icebreaking Cargo Vessels (쇄빙상선의 북극해 항로 항행 모델링)

  • Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.340-347
    • /
    • 2007
  • Main purpose of the study is to develop a transit model for icebreaking cargo vessels in the Northern Sea Route and to select optimum sea routes with the shortest navigation time and the lowest operation cost. This numerical model executed with basic information such as ship capabilities, transit directions and months of transit, can calculate total transit distance and elapsed time, mean speed, operation cost for each vessel. In the transit model. environment information such as the site-specific ice conditions, wave and wind states are utilized for four different months (April, June, August, and October) along the Northern Sea Route. The model also defines a necessary period of an icebreaker escort. Then the optimum sea routes are selected and visually displayed on the digital map using a commercial software ArcGIS. Usefulness of the selected sea routes is discussed.

Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota

  • Li Cui;Bin Zhang;Shuting Zou;Jing Liu;Pingrong Wang;Hui Li;Zhenhai Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.367-378
    • /
    • 2024
  • In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.