• Title/Summary/Keyword: Ice Hazards

Search Result 11, Processing Time 0.025 seconds

THE ICE ANALYSIS OF HIGH ASPECT RATIO WING USING FENSAP-ICE (FENSAP-ICE를 이용한 고세장비 날개 결빙해석)

  • Jung, K.J.;Lee, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.456-459
    • /
    • 2010
  • Icing is one of the most serious hazards for aircraft. The amount and rate of icing depend on a number of meteorogical and aerodynamic factors. Of primary importance are amount of liquid water content of droplets, their size, the temperature of aircraft surfaces, the collection efficiency, and the extent of supercooled droplets. In this study, in-flight icing analysis of low reynolds number high aspect ratio wing is carried out by using FENSAP-ICE. Each liquid water contents with altitude is obtained from FAR 25 Appendix-C. And the collectoin efficiency is calculated to check out the ice accretion position of wing with two angles of attack. The degradation of aerodynamic characteristics of aircraft are figured out by investigating the accretion of rime and glaze ice.

  • PDF

Development of a GTT NO96 Membrane Type 170K $m^3$ LNG Carrier with Ice Class IA (GTT.NO 96 멤브레인형 170K ICE-1A급 천연액화가스 운반선 개발)

  • Oh, Yeong-Tae;Han, Sung-Kon;Yoo, In-Sang;Urm, Hang-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.6-17
    • /
    • 2009
  • The present paper addresses development of a GTT NO96 membrane type 170K m3 LNG carrier targeted to operate in moderate ice infested seas including Baltic Sea, Sakhalin port of Sea of Okhotsk, Murmansk port of Barents Sea, etc. Critical design issues are covered in detail to meet the requirements coming from the missioned operation conditions comprising low design ambient temperature, harsh wave conditions, stringent environmental protection policies, etc.

  • PDF

STUDY OF ICING ACCRETION ON THE 2D AIRFOIL (2차원 에어포일에서의 결빙부착 수치해석)

  • Shin, H.B.;Choi, W.;Seo, S.J.;Ryu, J.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.21-26
    • /
    • 2009
  • Ice accretion is one of the potential hazards in airplane flight, adversely affecting aircraft aerodynamic. There are two distinct icing analysis that can be simulated. One is predicting the effect of ice on the aerodynamic performance of airfoils when ice geometry is known. The other is simulating ice accretion. This work presents the method of icing accretion analysis. This work presents an Eulerian approach to calculate the droplet collection efficiency on the 2D airfoil. The initial flow solution are obtained the FLUENT and copled with droplet motion in the ambient condition.

  • PDF

COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS (대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석)

  • Raj, L.P.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Vertically Development Processes of Jangho-ri Coastal Dune, West Coast of Korea (고창 장호리 해안사구의 수직 발달 과정 연구)

  • Han, Min;Kim, Jin Cheul;Yang, Dong-Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.79-92
    • /
    • 2016
  • Samples from two boreholes of coastal dune field at Jangho-ri coast, Gochang was studied. These were analyzed by grain size analysis geochemical analysis, and the application of OSL dating method to understand the development during the Holocene. The boreholes SB8 and SB9 were classified into three different sedimentary layers by their mean grain size and geochemical characteristics. The results revealed that the upper sand layer is equivalent to the present coastal dune layer, which developed since 1,200 years ago; the silt layer in the middle to the dune slack or lagoon sedimentation layer, which developed between 1,200 and 6,000 years ago; and the sand layer at the bottom to the paleo coastal dune that developed between 6,000 and 7,000 years ago. It was proposed that the forming material of current coastal dune was supplied from the sandy flat in coastal area, while the middle silt layer was supplied from the weathered soil of a bed rock by the comparison with material of surrounding area. In the case of coastal dune, concentrated layer of sands were identified which were buried about 300 and 1,200 years ago, which is identified as the little ice age. This study confirmed the development of Jangho-ri coastal dunes after Holocene Climate Optimum period, and it is likely to assist in the understanding of coastal dunes development.

Scaling Methods for Icing Wind Tunnel Test (결빙 풍동시험을 위한 스케일링 기법 연구)

  • An, Young-Gab;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.146-156
    • /
    • 2012
  • In-flight icing remains as one of the most persistent hazards for aircraft operations. The effect of icing on aircraft performance and safety has to be evaluated during the development and airworthiness certification process. The scaling method is a procedure to determine the scaled test conditions in icing wind tunnels in order to produce the same result as when the reference model is exposed to the desired cloud conditions. In this study, a scaling program is developed to provide an easy-to-use tool to the aero-icing community. The Olsen and Ruff 4th methods are employed for this purpose and the velocity is calculated by matching the dimensionless Weber number. To validate the program, the results are compared with the NASA scaling results. The scaling examples based on FAR (Federal Aviation Regulation) Part 25 Appendix C are also presented. Finally, a validation study using a state-of-the-art icing simulation code FENSAP-ICE is presented.

Analysis of Microbial Contamination in Poultry Slaughtering Operations for the Application of HACCP (HACCP 적용을 위한 도계처리 공정내 미생물 오염의 분석)

  • 홍종해;권혁무;고주언
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 1996
  • The application of HACCP system, which was adopted by Codex Alimentarius Committee for the safe meat and poultry production, is one of the urgent task for competing in the world trade markets. But there have been no useful analytical studies to identify the causes of contamination in the poultry meat processing plants in Korea. This study was conducted to investigate the potential hazards during the operations by the microbiological examination for the poultry meat processing plant (20,000 birds capacity a day) located in Kangwon province. In spite of air contamination of work places, it may not directly affect the surface contamination of poultry meats. But the risk of Campylobacter jejuni/coli contamination was high. The number of total count was decreased about ten times, but remarkable changes of microbial contamination could not be recognized in each procedure during the operations. The washing water was already contaminated as much as $10^{3-6}CFU/ml$ in SPC before the operations. It means that to keep water tanks hygienic is a primary step to prevent the occurrences of microbial contamination. The overflow and recirculation of water in scalding, washing, and chilling was aslo an important factor for a hygienic control. Based on this study, the followings could be regarded as an important factors for hygenic control in the poultry slaughtering plants on a small scale. The temperature of water used for scalding should be constantly maintained on a required temperature, and the overflow rate of 1~1.5 liter per bird. The carcass surface and the body cavity should be washed thoroughly and the cross-contamination due to facilities, workers, and tools should be prevented. The chilling water sholud be maintained under 5$\circ$C of temperature with ice and overflow, and residual chlorine level of 50 ppm.

  • PDF

Prediction of boil-off gas and boil-off rate in cargo tank of NGH carrier

  • Kang, Ho-Keunn;Kim, Dongeum;Kim, You-Taek;Park, Jung-Dae;Kang, Shin-Baek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1002-1010
    • /
    • 2015
  • Natural gas hydrates are newly emerging as an environment-friendly source of energy to substitute for fossil fuels in the 21stcentury.NGHs are reported to holds much amounts of natural gas (up to 182 standard volumes of gas per volume of hydrate); they are easy to store and safe to carry at about minus 20 degree Celsius under atmospheric pressure because of the self-preservation phenomenon of gas hydrates. The transporting method by gas-ice-hydrate ship carriers has been introduced and developed by a variety of industry and research institutions. Our team has been conducted to develop NGH total systems, including a breakthrough NGH carrier for sea transportation, since 2011. The NGH pellet carrier does not require a separate cooling system for cargo, and the initial temperature is maintained through insulation of the cargo tanks throughout the transport to the final destination. The heat conducted from the exterior and passing through the insulation material of the hull should be cut off as much as possible, but heat inflow inside the cargo tank from an external source is inevitable during transport. In this study, the heat transfer in a cargo tank of a 115K NGH carrier was analyzed through simulation with a commercial CFD code to estimate the boil-off gas/boil-off rate on the developed carrier and understand major hazards that could significantly impact the safety of the vessel.

Microbiological Hazard Analysis in Children Snacks around Schools (학교 주변 어린이기호식품의 미생물학적 오염도 평가)

  • No, Byung-Jin;Choi, Song-Yi;Kim, Soo-Chong;Lee, Dong-Ho;Seo, Il-Won;Ho, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.182-185
    • /
    • 2011
  • This study was conducted to develop an appropriated management for safety of children snacks sold around school. Total 598 items as targeted food were collected; 66 biscuits, 320 candies, 57 chocolates, 40 ice creams and 115 beverages. Microbiological hazards such as total aerobic bacteria, Coliforms, Escherichia coli, Bacillus ceruse, Yeasts & molds were measured by analytical method in Korean food code. Total aerobic bacteria and Yeasts & molds were detected in cookies at the level of less than 2.69 and 2.65 $log_{10}$ CFU/g and the detection rates were 54.55 and 62.12%, respectively. Bacillus cereus was detected in 1 snack only at the level of 1.39 $log_{10}$ CFU/g but it was less than Korean microbial standards and specifications (3 $log_{10}$ CFU/g). Total aerobic bacteria and Yeasts & molds were detected in candies less than 2.86, 3.36 $log_{10}$ CFU/g and the detection rates were 46,8% respectively. Total aerobic bacteria, Yeast & mold were detected in chocolates at the levels less than 2.52 and 1.87 $log_{10}$ CFU/g and the detection rates were 33 and 22% respectively. Total aerobic bacteria in both ice creams and beverages were detected at the levels less than 3.39 and 1.35 $log_{10}$ CFU/g and the detection rates were 82 and 5% respectively. Coliforms were found in one ice cream (1.39 $log_{10}$ CFU/g) only. The result of this study indicated that all children snacks around school were suitable for microbial standard and specifications in Korean Food Code. However, since most children snacks around school are circulated without proper storage temperature and handing condition, consistent microbial management for children snacks are needed.