• Title/Summary/Keyword: Ice Analysis

Search Result 614, Processing Time 0.027 seconds

Estimation of Icebreaking Forces and Failure Length of Ice Rubbles on Infinite Ice Sheet (무한 빙판에서의 쇄빙력과 파단 빙편의 크기 예측)

  • Choi, Kyung-Sik;Lee, Jin-Kyoung;Kim, Hyun-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Ice rubble pieces broken by the bow impact load and side hull of an icebreaking vessel usually pass along the ship's bottom hull and may hit the propeller/rudder or other stern structures causing serious damage to ship's hull . Therefore it is important to estimate the size of broken ice pieces during the icebreaking process. The dynamic interaction process of icebreaker with infinite ice sheet is simplified as a wedge type beam of finite length supported by elastic foundation. The wedge type ice beam is leaded with vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum dynamic bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a failure length of broken ice sheet given design parameters. The results are compared to Nevel(1961)'s analytical solution for static load and observed pattern of ice sheet failure onboard an icebreaker. Also by comparing computed failure length with the characteristic length, the meaning of ice rubble sizes is discussed.

Ice Floe-induced Ship Resistances using Explicit Finite Element Analyses with a User-subroutine (사용자-서브루틴과 양해법 유한 요소 해석을 이용한 선박의 유빙 저항 추정)

  • Han, Donghwa;Paik, Kwang-Jun;Jeong, Seong-Yeop;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • There have been many attempts to predict resistance of vessels in ice floe environment, but they mostly have both strong and weak points at the same time; for instance, simplified formulas are very fast but less flexible to types of ship and ice conditions and other numerical techniques need high computing cost for increased accuracy. A new numerical simulation technique of combining explicit finite element analysis code with a user-subroutine to control real-time forces acting on ice floes was proposed, thereby it was possible to predict ship-to-ice floe resistance with higher convenience and accuracy than other proposed approaches. The basic theory on how real-time hydrostatic and hydrodynamic forces acting on ice floes could be generated using user-subroutine was explained. The heave motion of a single ice floe was simulated using the user-subroutine and the motion amplitudes and periods were almost consistent with analytic values. Towing tests of an icebreaker model ship were simulated using explicit finite element analyses with the user-subroutine. The ice-induced resistance obtained from the towing experiments and simulations showed significant differences. Intentional increase of the drag coefficient to increase the contact duration between the ice floes and rigid model ship leaded the total resistance to be substantially consistent between the model tests and numerical simulations.

Coordination Pattern of Upper Limb of Sweep Shot Movement in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 상지의 협응 형태)

  • Choi, Ji-Young;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.169-179
    • /
    • 2007
  • The purpose of this study was to investigate the relations between the segments of the body and to qualitatively analyze coordination pattern of joints and segments during Sweep Shot movement in Ice Hockey, by utilizing coordination variables was angle vs. angle plots. By the utilization the three dimensional anatomical angle cinematography, the angles of individual joint and segment according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. The three dimensional anatomical angular displacement and coordination pattern of trunk and Upper limb(shoulder-elbow, elbow-wrist linked system) showed important role of sweep shot in ice hockey. As the result of this paper, for the successful movement of sweep shot in ice hockey, it is most important role of coordination pattern of trunk-shoulder, shoulder-elbow and elbow-wrist. specially turnk movememt as a proximal segment. Coordination pattern of Upper Limb(upperarm-forearm-hand) of Sweep Shot movement in Ice Hockey that utilizes coordination variables seems to be one of useful research direction to understand basic control mechanisms of Ice hockey sweep shooting linked system skill. this study result showed flexion-extension, adduction-abduction and internal-external rotation of trunk are important role of power and shooting direction coordination pattern of upper Limb of Sweep Shot movement in Ice Hockey.

Friction correction for model ship resistance and propulsion tests in ice at NRC's OCRE-RC

  • Lau, Michael
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.413-420
    • /
    • 2018
  • This paper documents the result of a preliminary analysis on the influence of hull-ice friction coefficient on model resistance and power predictions and their correlation to full-scale measurements. The study is based on previous model-scale/full-scale correlations performed on the National Research Council - Ocean, Coastal, and River Engineering Research Center's (NRC/OCRE-RC) model test data. There are two objectives for the current study: (1) to validate NRC/OCRE-RC's modeling standards in regarding to its practice of specifying a CFC (Correlation Friction Coefficient) of 0.05 for all its ship models; and (2) to develop a correction methodology for its resistance and propulsion predictions when the model is prepared with an ice friction coefficient slightly deviated from the CFC of 0.05. The mean CFC of 0.056 and 0.050 for perfect correlation as computed from the resistance and power analysis, respectively, have justified NRC/OCRE-RC's selection of 0.05 for the CFC of all its models. Furthermore, a procedure for minor friction corrections is developed.

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images (MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석)

  • Han, Hyangsun;Ji, Younghun;Kim, Yeonchun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.481-491
    • /
    • 2014
  • Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and ice fraction of ice slurry were varied from 800 to 3500 kg/$m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. Through the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF

Comparison of the 6-DOF Motion Sensor and Stain Gauge Data for Ice Load Estimation on IBRV ARAON (쇄빙연구선 ARAON호의 빙하중 추정을 위한 6자유도 운동계측 및 스트레인 게이지 데이터의 비교 분석)

  • Min, Jung Ki;Cheon, Eun-Jee;Kim, Jin Myung;Lee, Sang Chul;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.529-535
    • /
    • 2016
  • This study focuses on the comparison of measured data from 6-DOF motion sensor and strain gauge installed in the IBRV ARAON during 2015 summer voyage in the Arctic. Procedures to calculate the global ice load from MotionPak II inertial measurement system and the local load from stain gauge system are discussed. The ship's speed and peak load are determined in the concept of an ice collision "event". It is found that the peak values in the global ice calculated form whole ship motion analysis fall in the range of 1.5~3 times of the local ice load based in strain gauge measurement.

Predicting Shelf-life of Ice Cream by Accelerated Conditions

  • Park, Jung-Min;Koh, Jong-Ho;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1216-1225
    • /
    • 2018
  • Shelf-life is defined as the amount of time during which a food product retains its desired sensory, chemical, and physical characteristics while remaining safe for consumption. The food industry needs to rapidly obtain the necessary information for determining the shelf life of its products. Here we studied the approaches available for conducting accelerated shelf-life tests. Accelerated shelf-life testing is applied to a variety of products to rapidly estimate change in characteristics with time. The aim of this work was to use accelerated shelf-life testing to study the changes in pH, microbiology, and sensory characteristics of ice cream by the application of a kinetic approach and, based on the observations, to estimate its shelf life. As per the current law, there is no shelf life on ice cream. Our results suggest that the shelf life of an ice cream sample was 24.27 months at $-18^{\circ}C$, 2.29 months at $-6^{\circ}C$, 0.39 months at $-1^{\circ}C$, and 0.15 months at $4^{\circ}C$. Results of this study suggest that a set expiration date on ice cream might also contribute to effective management of ice cream characteristics in the retail chilled chain.

Observation, Experiment, and Analysis of the Ice Spikes Formation (솟는 고드름의 형성과정에 관한 관찰, 실험 및 분석)

  • Yoon, Ma-Byong;Kim, Hee-Soo;Son, Jeong-Ho;Yang, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.454-463
    • /
    • 2009
  • In this study, from January 2006 to February 2009, we observed 107 ice spikes formed in a natural state, and analyzed their environment. We developed an experimental device to reproduce ice spikes in laboratory and successfully made 531 ice spikes. We analyzed the process of the formation and the principle of how those ice spikes grow through videotaped data of the formation in the experiment. In the natural world, when the surface of water and the lower part of a vessel begin to freeze, a vent (breathing hole) develops at the surface where an ice is not frozen; this vent serves as the seed of an ice spike. It is assumed that the volume expansion of ice in the vessel which occurs when water freezes makes the supercooled water go upward through the vent and becomes an ice bar called an ice spike. In the laboratory, however, when distilled water is poured into an ice tray cube and kept in the experimental device for about one and a half hours at a temperature of -12- $-13^{\circ}C$, a thin layer of ice then begins to develop on the surface of the water, the vent is formed, and ice spikes form for about 10-30 minutes. These spikes stop growing when the end becomes clogged. Ice spikes can be described as falling into seven categories of shape, with the apex type topping the list followed by the slant type in the natural state and the vertical type predominating in the laboratory.