• 제목/요약/키워드: IVM-IVF

검색결과 186건 처리시간 0.03초

소 미성숙 난포란의 체외성숙 (In Vitro Maturation of Bovine Follicular Oocytes)

  • 문승주;김은국;김광현;선상수;명규호;김재홍
    • 한국수정란이식학회지
    • /
    • 제15권1호
    • /
    • pp.39-46
    • /
    • 2000
  • This study was conducted to investigate the effect of hormones, protein sources and anti-oxidants on in vitro maturation (IVM) and in vitro fertilization(IVF) of bovine follicular oocytes. The rates of Holstein follicular oocytes classified as grade A and B(50.2% and 33.2%) were higher than those of Hanwoo cattle(40.3% and 32.0%, P<0.05). The cumulus cell expansion rates of oocytes cultured in TCM-199 and Ham's F-10 medium supplemented with 10% FCS and hormones were higher (81.9~87.6%) than those of non-treated groups (74.5~81.7%). The fertilization rates of oocytes cultured in TCM-199 and Ham's F-10 medim supplemented with 10% FCS, 1% BSA and 10% bFF was 53.8~55.0%, 51.4~52.6%, and 47.0~50.0%, respectively. The polyspermy rates was 13.6~14.2%, 10.0~11.1%, and 10.0%, respectively. When the oocytes were cultured in TCM-199 and Ham's F-10 medium with 50${\mu}{\textrm}{m}$ $\alpha$-tocopherol, the fertilization rates was 62.0 and 60.2%, respectively. In the maturation medium added of 100${\mu}{\textrm}{m}$ cysteamine, the fertilization rates was 64.7 and 66.7%, respectively. The fertilization and polyspermy rates of treated groups were higher than those of non-treated group. The results show that hormones, protein sources and anti-oxidants can provide a benefit for in vitro maturation and fertilization of bovine follicular oocytes.

  • PDF

개 난자의 체외성숙과 체외수정에 관한 연구 (Studies on the IVM/IVF Rate of In Vitro Cultured Canine Oocytes)

  • 이봉구;김상근
    • 한국수정란이식학회지
    • /
    • 제21권1호
    • /
    • pp.7-11
    • /
    • 2006
  • 개 난자의 체외성숙과 체외수정을 통해 수정란을 획득하기 위하여 개 난소를 채취하여 난자의 형태, 난소의 채취시기 등이 체외성숙과 체외수정에 미치는 영향을 구명하기 위하여 수행하였다. 1. 난구세포 부착 및 미부착 난자를 48시간 배양했을 때 체외 성숙율은 $42.0{\pm}3.4%,\;24.4{\pm}4.1%$였다. 난구 세포 부착 난자의 체외 성숙율이 미부착 난자의 체외 성숙율보다 유의하게 높게 나타났다(p>0.05). 2. 난소를 휴지기, 난포기 및 황체기로 구분하여 난자를 회수하여 배양했을 때 체외 성숙율은 각각 35.6%, 50.0%, 31.1%였고 체외 발생율은 각각 2.2%, 20.0% 및 8.9%로서 난구 세포 부착 난자가 미부착 난자에 비해 유의한 체외 수정율을 나타냈다. 3. 난구세포 부착 및 미부착 난자를 이용하여 체외수정시켰을 때 체외 수정율과 체외 발생율은 각각 48.0%, 35.6% 및 22.5%, 13.3%로서 난구세포 부착 난자가 미부착 난자에 비해 유의하게 높게 나타났다.

돼지 난포란의 형태와 배양시간이 체외성숙 및 수정란의 배발생능에 미치는 영향 (Effect of Type and Culture Time of Porcine Oocytes On in Vitro Maturation and Developmental Potential of Embryos)

  • 이장희;김창근;정영채
    • 한국수정란이식학회지
    • /
    • 제9권1호
    • /
    • pp.73-83
    • /
    • 1994
  • The objective of this study was to develop an effective in vitro production system capable of obtaining more porcine embryos from immature oocytes. These experiments were thus conducted to examine the effect of oocytes type and maturation time on the in vitro maturation(IVM) and fertilization(IVF) of oocytes and the in vitro development (IVD)of IVF embryos. 1. The degree of oocyte maturation based on cumulus expansion index(GEI) did not differ for A- and B-typed oocytes but the index of oocyte type C was lower(P<0.05) than that of other oocyte types. 2. When the oocytes of type A and B were matured for 36, 42 and 48hrs, the GEl was not different between the 36- and 42-h maturation but the GEl after 48hrs was greatly lower(P<0.05) than that of other maturation times. 3. The highest cleavage rate(48.6%) of IVF oocytes was obtained from A typed oocytes and 42-h maturation but the developmental potential based on cleavage index was the highest when B-typed oocytes were matured for 42hrs.

  • PDF

Thiol 화합물과 황산화제 첨가배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 효과 I. $\beta$-Mercaptoethanol과 Cysteamine 첨가가 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향 (Effect of Thiol Compounds and Antioxidants on In Vitro Development and Intracellular Glutathione Concentrations of Bovine Embryos Derived from In Vitro Matured and In Vitro Fertilized I. Effect of $\beta$-Mercaptoethanol and Cysteamine on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos)

  • 양부근;박동헌;정희태;박춘근;김종복;김정익
    • 한국가축번식학회지
    • /
    • 제21권4호
    • /
    • pp.335-343
    • /
    • 1997
  • The effect of thiol compounds on development and intracellular glutathione(GSH) concentrations of bovine embryos produced by in vitro maturation and in vitro fertilization(IVM/IVF) was examined in CRlaa medium with or without $\beta$-mercaptoethanol(0, 10, 25 and 50$\mu$MME) and cysteamine(0, 25, 50 and 75 $\mu$M). Numbers of cells comprising blastocysts were also counted using double fluorescence stain and the total glutathione levels(oxidized and reduced form) of morula and blastocyst embryos were than measured by an enzymatic method. Following routine IVM/IVF procedures oocytes and zygotes were cultured for 40 to 44h in CRlaa medium. Then 2 to 8-cell embyos had cumulus cell removed and were allotted randomly to the experimental medium. In Experiment 1, the proportion of embryos developing to and beyond morulae stages in 0, 10, 25 and 50 $\mu$M $\beta$-ME was 42.9%, 50.0%, 53.7% and 65.6%, respectively. Fifty $\mu$M $\beta$-ME group was significantly higher than those of any other groups (P<0.05). In Experiment 2, the percentages of embryos developed beyond morulae stages in 0, 25, 50 and 75 $\mu$M cysteamine was 42.9%, 40.4%, 60.0% and 59.2%, respectively. Fifty and 75$\mu$M cysteamine groups were significantly higher than in 0 and 25 $\mu$M cysteamine groups, but all of culture medium containing cysteamine(52.6%) was not significantly difference in control group(42.9%). In Experiment 3, the intracellular GSH concentrations of morulae and blastocyst embryos in 0 and 50 $\mu$M $\beta$-ME was 42.4 pM and 44.9 pM, 49.5 pM and 67.8 pM, respectively. Morulae embryos were not difference, but blastocyst embryos were significantly difference between treatments(P<0.05). In Experiment 4, the intracellular GSH concentrations of morulae in CRlaa with or without cysteamine were 39.8 pM and 45.6 pM, and blastocysts were 59.3 pM and 66.8 pM, respectively. Cell numbers of blastocysts were similar to in all experimental groups. These experiments indicate that thiol compounds can increase the proportion of embryos that developing to and beyond morulae stage and the intracellular GSH concentrations.

  • PDF

불임 여성의 난소로부터 회수된 미성숙 난자의 체외 성숙과 배양에 관한 연구 (Study on In Vitro Maturation and Culture of Immature Oocytes Collected from Ovaries of Infertile Women)

  • 이석윤;손원영;윤산현;이원돈;박창식;임진호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제30권4호
    • /
    • pp.333-340
    • /
    • 2003
  • Objective: This study was performed to examine the maturation and the development to the blastocyst stage of immature oocytes collected from patients with high risk of ovarian hyperstimulation syndrome (OHSS). Materials and Methods: Cumulus-oocyte complexes (COCs) were collected following only HCGpriming for non stimulated IVF-ET cycles of the patients. At the time of oocyte collection, COCs were classified into three groups in accordance with their appearance (Group I: oocytes with dispersed cumulus cells; Group II: oocytes with compacted cumulus cells; Group III: oocytes with sparse cumulus cells). The in vitro maturation and blastocyst development rates of the COCs were compared among these groups. From August 2001 to June 2002, 48 IVM/IVF-ET cycles from 42 patients (mean age: $32.4{\pm}3.8$ years) were performed. To prevent the occurrence of OHSS, the patients were primed with 10, 000 IU HCG alone 36 h before oocyte collection without gonadotropin stimulation. Oocytes were aspirated on cycle days from 7 to 13. The normal COCs were classified into three groups according to their appearance. The aspirated immature oocytes were cultured in YS maturation medium containing 30% (v/v) human follicular fluid (HFF), 1 IU/ml FSH, 10 IU/ml HCG and 10 ng/ml rhEGF. Fertilization was induced by intracytoplasmic sperm injection (ICSI). All zygotes were co-cultured with cumulus cells in $10{\mu}l$ YS medium containing 10% HFF until day 7 after oocyte collection. Blastocyst transfer was performed on day 5 after ICSI. Results: Th e mean number of oocytes cultured in the IVM/IVF cycles was $24.7{\pm}10.6$. Of 1185 COCs, those assigned to Group I, II and III were 470 (39.7%), 414 (35.0%) and 301 (25.4%), respectively. The maturation rate (94.5%, 444/470, p<0.05) in Group I was significantly higher than those of Group II (62.8%, 260/414) and Group III (73.1%, 220/301). Especially, 30.9% of COCs in Group I (145/470) was matured on the day of oocyte aspiration. There were no differences in the rates of fertilization and cleavage among the three groups. The development rate to the blastocyst stage in Group I (54.6%, 206/377, p<0.05) was also significantly higher than those in Group II (33.0%, 68/206) and Group III (30.1%, 52/173). Twenty-four clinical pregnancies (50.0%) was obtained and 22 pregnancies (45.8%) are ongoing. Implantation rate in the present study was 24.6%. Conclusion: These results suggest that there is a positive correlation between the appearance of COCs and the developmental competence of the immature oocytes in non stimulated IVM/IVF cycles.

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong;Kang, Dawon
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.133-139
    • /
    • 2014
  • $K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.

체외성숙배양 조건이 마우스 난자의 체외수정 및 다정자침입에 미치는 영향 (In Vitro Fertilization and Polyspermy in Follicular Oocytes Matured in Various Culture Conditions)

  • 박기상;이상호;송해범
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제21권2호
    • /
    • pp.177-182
    • /
    • 1994
  • ICR female mice aged 3 to 4 weeks, were stimulated with 7.5 IU PMS injection. At 48-52h post-PMS injection, ovaries were dissected out and oocytes-cumulus complexes(OCCs) were divided into three groups, cumulus-free oocytes(O), cumulus-free oocyte cocultured with cumulus cells(O+C) and OCC. The oocyte were cultured in TCM199 containing various protein sources, FCS, BSA or PVP with gonadotropins(Gns) for 24h. Spermatozoa were collected from cauda epididymis and capacitated in T6 + BSA for 2h. After oocyte maturation in vitro(IVM) in different experimental groups, matured oocytes were inseminated with the capacitated spermatozoa in T6 + BSA for 6h. In the groups of IVM in TCM + BSA or PVP, fertilization(IVF) did not occur efficiently. However, increased fertilization was found in TCM+ FCS group. The oocytes groups, with cumulus cells showed decreased polyspermy in FCS group (O; 31.8 %, O + C; 12.2 %, OCC; 16%), the addition of Gns did not prevent polyspermy in all three groups. The rates of fertilization increased in zona-free oocytes in PVP group. This results showed that culture system for IVM and IVF could be improved. Furthermore, PVP can be used for the substitution of protein source during maturation, and its low rate of fertilization has been found due to zona hardening which occurred in FCS-free medium.

  • PDF

Effect of Alpha Lipoic Acid as an Antioxidant Supplement during In Vitro Maturation Medium on Bovine Embryonic Development

  • Hassan, Bahia M.S.;Fang, Xun;Roy, Pantu Kumar;Shin, Sang Tae;Cho, Jong Ki
    • 한국수정란이식학회지
    • /
    • 제32권3호
    • /
    • pp.123-130
    • /
    • 2017
  • This study was conducted to investigate the effects of alpha-lipoic acid (aLA) as an antioxidant that decrease the reactive oxygen species (ROS) in bovine embryonic development. Slaughterhouse derived bovine immature oocytes were collected and 4 different concentrations (0, 5, 10 and 20 mM) of aLA was supplemented in bovine in vitro maturation (IVM) medium. After 20 hrs of IVM, maturation rates, levels of ROS and glutathione (GSH), and further embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF) was investigated according to aLA concentrations. Maturation rate was significantly higher in 10 mM group than other groups (80.5% vs. 62.9, 73.9, 64.2%; P<0.05). In the levels of ROS and GSH in matured oocytes as an indicator of oocyte quality, significantly better results were shown in 5 and 10 mM groups compared with other 2 groups. After IVM, significantly higher rates of blastocyst formation were shown in 10 mM groups in both of PA (27.9% vs. 18.8, 22.3, 14.2%; P<0.05) and IVF (32.6% vs. 23.9, 27.3, 16.2%; P<0.05) embryos. In addition, significantly more cell total cell number and higher inner cell mass ratio in 10 mM PA and IVP blastocysts showed developmental competence in 10 uM groups. Therefore, based on the entire data from this study, using $10{\mu}M$ of aLA confirmed to be the optimal concentration for bovine oocyte maturation and embryonic development.