• 제목/요약/키워드: IVM oocytes

검색결과 265건 처리시간 0.022초

Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin

  • Jakree Jitjumnong;Pin-Chi Tang
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1007-1020
    • /
    • 2024
  • Objective: We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. Methods: Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. Results: A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. Conclusion: Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.

Current approaches for assisted oocyte maturation in camels

  • Saadeldin, Islam M.;Cho, Jongki
    • 한국동물생명공학회지
    • /
    • 제36권3호
    • /
    • pp.162-167
    • /
    • 2021
  • Camel (camelus dromedarius) is a unique large mammalian species that can survive harsh environmental conditions and produce milk, meat, and wool. Camel reproduction is inferior when compared to other farm animal species such as cattle and sheep. Several trials have been reported to increase camel reproduction and production through assisted reproductive techniques (ARTs) such as in vitro fertilization and cloning. For these reasons, obtaining enough mature oocytes is a cornerstone for ARTs. This demand would be improved by the oocyte in vitro maturation (IVM) systems. In this review, the current approaches and views from different laboratories using ARTs and the IVM to produce embryos in vitro in camel species. For the last two decades, conventional IVM system was the common approach, however, recently the bi-phasic IVM system has been introduced and showed promising improvement in IVM of camel oocytes. Detailed studies are needed to understand camel meiosis and IVM to efficiently increase the production of this species.

Endoplasmic Stress Inhibition during Oocyte Maturation Improves Preimplantation Development of Cloned Pig Embryos

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.287-295
    • /
    • 2017
  • Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.

Cryopreservation of in vitro matured oocytes after ex vivo oocyte retrieval from gynecologic cancer patients undergoing radical surgery

  • Park, Chan Woo;Lee, Sun Hee;Yang, Kwang Moon;Lee, In Ho;Lim, Kyung Teak;Lee, Ki Heon;Kim, Tae Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권2호
    • /
    • pp.119-125
    • /
    • 2016
  • Objective: The aim of this study was to report a case series of in vitro matured (IVM) oocyte freezing in gynecologic cancer patients undergoing radical surgery under time constraints as an option for fertility preservation (FP). Methods: Case series report. University-based in vitro fertilization center. Six gynecologic cancer patients who were scheduled to undergo radical surgery the next day were referred for FP. The patients had endometrial (n=2), ovarian (n=3), and double primary endometrial and ovarian (n=1) cancer. Ex vivo retrieval of immature oocytes from macroscopically normal ovarian tissue was followed by mature oocyte freezing after IVM or embryo freezing with intracytoplasmic sperm injection. Results: A total of 53 oocytes were retrieved from five patients, with a mean of 10.6 oocytes per patient. After IVM, a total of 36 mature oocytes were obtained, demonstrating a 67.9% maturation rate. With regard to the ovarian cancer patients, seven IVM oocytes were frozen from patient 3, who had stage IC cancer, whereas one IVM oocyte was frozen from patient 4, who had stage IV cancer despite being of a similar age. With regard to the endometrial cancer patients, 15 IVM oocytes from patient 1 were frozen. Five embryos were frozen after the fertilization of IVM oocytes from patient 6. Conclusion: Immature oocytes can be successfully retrieved ex vivo from macroscopically normal ovarian tissue before radical surgery. IVM oocyte freezing provides a possible FP option in patients with advanced-stage endometrial or ovarian cancer without the risk of cancer cell spillage or time delays.

Improved Enucleation Efficiency of Pig Somatic Cell Nuclear Transfer by Early Denudation of Oocytes at 30 Hours of In Vitro Maturation

  • Song, Kil-Young;Hyun, Sang-Hwan;Lee, Eun-Song
    • 한국수정란이식학회지
    • /
    • 제22권4호
    • /
    • pp.235-243
    • /
    • 2007
  • Our goal was to examine the effects of early denudation on the enucleation efficiency and developmental competence of embryos following somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA). Oocytes were denuded following 30 h of in vitro maturation (IVM) and then cultured with (D+) or without (D-) their detached cumulus cells for additional $10{\sim}14$ h. Control oocytes were denuded after $40{\sim}44$ h of IVM. The size of the perivitelline space was larger at 40 h of IVM ($11.7{\sim}11.8{\mu}m$) than at 30 h ($8.9{\mu}m;$ p<0.01). The distances between the metaphase II (M II) plates and the polar bodies (PBs) were shorter in D+ ($19.4{\mu}m$) and D- oocytes ($18.9{\mu}m$) than in control oocytes ($25.5{\mu}m;$ p<0.01). Enucleation rates following blind aspiration at 40 h of IVM were higher (p<0.01) in D+ (92%) and D- oocytes (93%) compared to controls (82%). Early denudation did not affect oocyte maturation or the in vitro development of SCNT and PA embryos. When SCNT embryos from D+ oocytes were transferred to four gilts, pregnancy was established in two pigs, and one of them farrowed three live piglets. In conclusion, early denudation of oocytes at 30 h of IVM could improve the enucleation efficiency by maintaining the M II plate and the PB within close proximity and support the in vivo development of SCNT embryos to term.

In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer

  • Lee, Yongjin;Lee, Joohyeong;Hyun, Sang-Hwan;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.31.1-31.13
    • /
    • 2022
  • Background: Compared to medium containing 108 mM sodium chloride (NaCl), in vitro maturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes. Objectives: This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes. Methods: Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM. Results: Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference. Conclusions: IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.

Meiotic Competence of Caprine Oocytes During IVM on Granulosa Cell Monolayers Developed from Small and Large Follicles in Comparison to the Granulosa Cell Coculture

  • Sharma, G. Taru;Teotia, Alok;Majumdar, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.777-784
    • /
    • 2001
  • Evaluation of the granulosa cell (GC) monolayers developed from small (<5 mm) and large (>5 mm) follicles on the meiotic competence of caprine oocytes during in vitro maturation was done in this study in comparison to the granulosa cell coculture. Ovaries were collected from the local abattoir and follicular contents were aspirated for the monolayer culture. For IVM the oocytes were collected by puncturing the nonatretic follicles (>4 mm). Results revealed that at the same seeding rate, small follicular granulosa cell monolayer achieved confluence 24-48 h earlier than large follicular granulosa cell monolayer. GC monolayers significantly p (<0.05) improved the rate of meiotic resumption and nuclear maturation (84.76% vs 74.74%) after 27 h of culture in comparison to GC coculture. Statistically there was no significant difference in the maturation rate between the caprine oocytes matured over small or large follicular GC monolayers. It is concluded from the present study that GC monolayers support better nuclear and cytoplasmic maturation of growing caprine oocytes which is evident by better maturation rate over GC monolayer as compared to the oocytes matured with GC coculture. Granulosa cells from small and large follicles can be used for IVM with more or less in the same efficiency after conditioning them with maturation media in 18-24 h before the onset of culture.

STUDIES ON PRODUCTION AND EFFICIENT UTILIZATION OF LIVESTOCK EMBRYOS BY IN VITRO FERTILIZATION AND MICROMANIPULATION IV. NUCLEAR TRANSPLANTATION AND ELECTROFUSION FOR CLONING IN BOVINE FOLLICULAR OOCYTES

  • Chung, Y.C.;Kim, C.K.;Song, X.X.;Yoon, J.T.;Choi, S.H.;Chung, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제8권6호
    • /
    • pp.641-645
    • /
    • 1995
  • This study was conducted to develop a method for production of nuclear transplant bovine embryos using in vitro-matured (IVM) oocytes and to examine the effect of different conditions of electrofusion on fusion rate and developmental capacity of donor nucleus transplanted to enucleated oocytes. Eight- to sixteen-cell embryos derived from oocytes matured and fertilized in vitro used as donor blastomeres and IVM oocytes were used as recipient oocytes. Oocytes were enucleated immediately after 23-24 h IVM and then reconstituted with a donor blastomere in two different micromanipulation media. Fusion rate and subsequent development of the reconstituted oocytes was compared under the different electric stimuli and recipient oocyte ages. Success rate of enucleation was significantly higher in TCM-199 medium containing FCS than in DPBS. The high fusion rate(75-94%) and development (6.4-14.8%) to morulae and blastocyst (M + B) were obtained from 0.6-0.75 kV/cm DC voltage, although total cleavage was not different among the electric pulses. Most optimal condition of electric stimulation for fusion and development was 1 DC voltage of 0.75 kV/cm, in which 80.5% of oocytes were fused, 80.0% and 31.7% of which was cleaved and developed to M + B, respectively. No M + B was obtained from 1.2 kV/cm DC voltage regardless of pulse frequency. Recipint oocyte age at electrofusion greatly affected the cleavage and subsequent development to M + B, showing high rate at 40-41 h oocyte maturation. These results suggest that a suitable condition of electrofusion for donor nuclei derived from IVF may be 1-2 DC pulses of 0.7 kV/cm for $70{\mu}sec$ and that processing of a transplanted nucleus in IVM oocytes may be affected by maturation age of recipient oocytes.

3-Hyroxyflavone in Maturation Medium Supports In Vitro Development of Fertilized Bovine Follicular Oocytes

  • Kim, Se-Woong;Park, Jong-Im;Jung, Yeon-Gil;Roh, Sangho
    • Reproductive and Developmental Biology
    • /
    • 제38권4호
    • /
    • pp.143-146
    • /
    • 2014
  • Antioxidants, as reactive oxygen species scavengers, are one of the beneficial additives in serum-free defined culture medium. In this study, three separate experiments were performed to determine the effects of 3-hyroxyflavone added to the culture medium on the developmental competence of follicular bovine oocytes during in vitro maturation (IVM) and/or in vitro culture (IVC). The rate of blastocyst developed from oocytes cultured in IVM medium with 3-hyroxyflavone was significantly higher than that from control oocytes (39.0% vs. 26.3%, p<0.001), respectively. However, oocytes cultured in the medium with addition of 3-hyroxyflavone only at IVC period did not show significance in the blastocyst development when compared with control. When 3-hyroxyflavone was added to both IVM and IVC media, the rate of blastocyst formation was even significantly lower (21.1%) than control (26.5%; p<0.05). The present findings suggested that antioxidative activity of 3-hydroxyflavone added to only IVM medium beneficially affected the developmental competence of follicular bovine.

Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Treatment during Pre-maturation Increases the Maturation of Porcine Oocytes Derived from Small Follicles

  • Park, Kyu-Mi;So, Kyoung-Ha;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제33권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Cellular cyclic adenosine-3' 5'-monophosphate (cAMP) modulator is known as meiotic inhibitor and can delays spontaneous maturation in IVM experiment. Among many cAMP modulators, the role of Pituitary adenylate cyclase activating polypeptide (PACAP) on IVM isn't known. The purpose of this study is to improve the maturation of oocytes derived from follicles ${\leq}3mm$ in diameter through PACAP as meiotic inhibitor during pre-in vitro maturation (pre-IVM). First, we checked PACAP and its receptors in cumulus cells and, to establish the optimal phase and concentration of PACAP for pre-IVM, we conducted chromatin configuration assessments. As a result, the rate of GV (Germinal Vesicle) according to duration of pre-IVM was significantly decreased 12 h and 18 h after IVM (87.1 and 84.1%, respectively) compared to 0 h (99.4%). When COC was cultured for 18 h, the GV rate in the $1{\mu}M$ of PACAP treatment group (82.1%) was significantly higher than any other PACAP treatment groups (60.5, 64.1, 74.4 and 69.9 %, respectively). So, we divided into four groups as follows; MF (the conventional IVM group, obtained from follicle from 3 to 6 mm in diameter), SF (the conventional IVM group, obtained from follicle ${\leq}3mm$ in diameter), Pre-SF(-)PACAP (IVM group including 18 h pre-IVM without $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter) and Pre-SF(+)PACAP (IVM group including 18 h pre-IVM with $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter). To examine the effect of PACAP during pre-IVM, we investigated analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. In cumulus cells, PACAP receptors, ADCYAP1R1 and VIPR1 were detected but were not detected in oocytes. After IVM, the Pre-SF(+)PACAP had the highest Metaphase II rate (91.7%) among all groups (P<0.05). The GSH levels in the MF and Pre-SF(+)PACAP were significantly higher than in the other groups (P<0.05) and ROS levels was no significant difference among all groups. In conclusion, these results indicated that even though the oocytes were derived from SF, pre-IVM application of PACAP improved meiotic and cytoplasmic maturation by regulating intracellular oxidative stress.