• Title/Summary/Keyword: ITS-PCR

Search Result 2,032, Processing Time 0.024 seconds

Discrimination of Aralia continentalis from other Herbs Identified as 'Angelicae Pubescentis Radix' by Multiplex Polymerase Chain Reaction (PCR) (Multiplex PCR을 이용한 독활 류 식물로부터 Aralia continentalis 감별)

  • Lee, Gwon-Jin;Doh, Eui-Jeong;Ko, Byong-Seob;Lee, Mi-Young;Oh, Seung-Eun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.5
    • /
    • pp.329-337
    • /
    • 2010
  • 'Angelicae Pubescentis Radix' (APR) is an important oriental medical preparation. In Korea, Aralia continentalis has been recognized as the source plant of APR. Aralia cordata, which is difficult to distinguish from A. continentalis, and Heracleum moellendorffii, which is frequently used in lieu of A. continentalis, are traded in Korean herbal markets. In contrast, in China, Angelica pubescens is recognized as the source plant of APR. In this study, we devised a method not only to discriminate A. contientalis from A. cordata, but also to discriminate both A. contientalis and A. cordata from H. moellendorffii and A. pubescens. Based on the discrepancy in the sequences of specific regions of ITS, we designed a Cont F/ Cont R primer set to amplify a 173 bp PCR band that appears only in A. continentalis. Additionally, we designed an Ara F/ Ara R primer set to amplify a 278 bp PCR band that appears in both A. continentalis and A. cordata. Using these primer sets and the ST R primer to confirm the PCR amplification results, we developed a simple multiplex PCR method for differentiating A. continentalis from A. cordata and to concurrently differentiate both A. continentalis and A. cordata from other APR herbs.

Molecular Authentication of Acanthopanacis Cortex by Multiplex-PCR Analysis Tools

  • Kim, Min-Kyeoung;Jang, Gyu-Hwan;Yang, Deok-Chun;Lee, Sanghun;Lee, Hee-Nyeong;Jin, Chi-Gyu
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.680-686
    • /
    • 2014
  • Acanthopanacis Cortex has been used for oriental medicinal purposes in Asian countries especially in Korea and China. In the Korean Pharmacopeia, the cortexes of the dried roots, stems and branches of all species in Eleutherococcus and Eleutherococcus sessiliflorus are known as 'Ogapi'. Mostly the cortexes of E. gracilistylus roots and E.senticosus roots were used as 'Ogapi' in China and Japan, respectively. Therefore, the purpose of this study was to determine and compare the molecular authentication of Korean 'Ogapi' by using the ribosomal internal transcribed spacer (ITS) region. The ITS region has the highest possibility of effective and successful identification for the widest variety of molecular authentication. The ITS region was targeted for molecular analysis with Single nucleotide polymorphisms (SNPs) specific for morphologically similar to E. gracilistylus, E. senticosus, E. sessiliflorus from their adulterant, moreover, E. sieboldianus were detected within sequence data. Thus, based on these SNP sites, specific primers were designed and multiplex PCR analysis were conducted for molecular authentication of four plants (E. gracilistylus, E. senticosus, E. sessiliflorus, and E. sieboldianus). The findings of results indicated that ITS region might be established multiplex-PCR analysis systems and hence were proved to be an effective tools for molecular evaluation and comparison of 'Ogapi' with other plants.

Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by Multiplex Polymerase Chain Reaction (mPCR)

  • Park, Yeon-Sun;Lee, Sang-Rok;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.92-97
    • /
    • 2006
  • We developed an mPCR assay for the simultaneous detection, in one tube, of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes using species-specific primers. The mPCR employed the E. coli O157:H7 specific primer Stx2A, Salmonella spp. specific primer Its, S. aureus specific primer Cap8A-B and L. monocytogenes specific primer Hly. Amplification with these primers produced products of 553, 312, 405 and 210 bp, respectively. All PCR products were easily detected by agarose gel electrophoresis, and the sequences of the specific amplicons assessed. Potential pathogenic bacteria, in laboratory-prepared and four commercially available kimchi products, were using this mPCR assay, and the amplicons cloned and sequenced. The results correlated exactly with sequences derived for amplicons obtained during preliminry tests with known organisms. The sensitivity of the assay was determined for the purified pathogen DNAs from four strains. The mPCR detected pathogen DNA at concentrations ranging from approximately 0.45 to $0.05\;pM/{\mu}l$. Thus, this mPCR assay may allow for the rapid, reliable and cost-effective identification of four potentially pathogens present in the mixed bacterial communities of commercially available kimchi.

Detection of Virus in Fruit and Seed of Vegetables Using RT-PCR (RT-PCR에 의한 과채류 열매 및 종자의 바이러스 검정)

  • 최장경;김혜자;윤주연;박선정;김두욱;이상용
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 1998
  • Tobacco mosaic tobamovirus (TMV), cucumber mosaic cucumovirus (CMV), cucumber green mottle mosaic tobamovirus (CGMMV) and zucchini yellow mosaic potyvirus (ZYMV) from individual fruits and seeds of hot pepper and cucumber were detected by the reverse transcription-polymerase chain reaction (RT-PCR). The dilution end-points for RT-PCR in curde sap from TMV. and CMV - infected hot pepper leaves and CMV - and CGMMV-infected cucumber leaves were 10-5. However, the amount of PCR product obtained from preparation of ZYMV-infected cucumber leaf was 10-fold lower than those of CMV or CGMMV-infected cucumber leaves. In hot pepper, both TMV and CMV were detected in all parts of the fruit wall tissue, but the yields of PCR products in the fruit stalk and its surrounding tissues were higher than those of the end parts of the fruit. On the other hand, in cucumber fruit infected with CMV, CGMMV or ZYMV, the fruit wall tissue and seed located in both stalk and end parts showed higher yields of PCR products than those of intermediate parts. Of five viruses that were analysed, only TMV in hot pepper seed, and CGMMV and CMV in cucumber seed were detected in testa parts.

  • PDF

Detection of Colletotrichum acutatum and C. gloeosporioides by Real Time PCR (Real Time PCR을 이용한 Colletotrichum acutatum과 C. gloeosporioides의 검출)

  • Kim, Seung-Han;Kwon, Oh-Hun
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.219-222
    • /
    • 2008
  • Real time PCR was used to discriminate Colletotrichum acutatum and C. gloeosporioides for analysis of population density. Two primers, caInt2 and cgint, used for conventional PCR to discriminate two species were modified with fluorescent dye to make probe for real time PCR. Fluorescence signals were successfully detected by fCaInt2 and vCgint probe coupled with primer pair Unicon and Unicor1 resulting in discrimination of C. acutatum and C. gloeosporioides by comparison of delta Rn value.

Genotyping Based on Polymerase Chain Reaction of Enterobacter sakazakii Isolates from Powdered Infant Foods

  • Choi, Suk-Ho;Choi, Jae-Won;Lee, Seung-Bae
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1171-1177
    • /
    • 2008
  • This study was undertaken to classify Enterobacter sakazakii isolates from 13 powdered infant formula products, 25 powdered weaning diet products, and 33 weaning diet ingredients on polymerse chain reaction (PCR) methods. The numbers of the isolates from 1 powdered infant formula product, 7 powdered weaning diet products, and 6 weaning diet ingredients were 1, 14, and 8, respectively. The contaminated ingredients were 1 rice powder, 2 millet powders, 2 vegetable powders, and 1 fruit and vegetable premix. PCR with the primer of repetitive extragenic palindromic element (REP-PCR) and random amplification of polymorphic DNA(RAPD) were effective in discriminating among the isolates, but tRNA-PCR and PCR with the primer of l6S-23S internal transcribed spacer (ITS-PCR) were not. Some of E. sakazakii isolates from vegetable powders, fruit and vegetable premix, and millets powders were classified into the clonal groups based on the DNA patterns in the REP-PCR and RAPD analysis. A close genetic relationship among the isolates from some of the powdered weaning diet products and the rice powder was also detected in the cluster analysis based on the DNA patterns in RAPD.

Novel Heptaplex PCR-Based Diagnostics for Enteric Fever Caused by Typhoidal Salmonella Serovars and Its Applicability in Clinical Blood Culture

  • Hyun-Joong Kim;Younsik Jung;Mi-Ju Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1457-1466
    • /
    • 2023
  • Enteric fever is caused by typhoidal Salmonella serovars (Typhi, Paratyphi A, Paratyphi B, and Paratyphi C). Owing to the importance of Salmonella serovars in clinics and public hygiene, reliable diagnostics for typhoidal serovars are crucial. This study aimed to develop a novel diagnostic tool for typhoidal Salmonella serovars and evaluate the use of human blood for clinically diagnosing enteric fever. Five genes were selected to produce specific PCR results against typhoidal Salmonella serovars based on the genes of Salmonella Typhi. Heptaplex PCR, including genetic markers of generic Salmonella, Salmonella enterica subsp. enterica, and typhoidal Salmonella serovars, was developed. Typhoidal Salmonella heptaplex PCR using genomic DNAs from 200 Salmonella strains (112 serovars) provided specifically amplified PCR products for each typhoidal Salmonella serovar. These results suggest that heptaplex PCR can sufficiently discriminate between typhoidal and non-typhoidal Salmonella serovars. Heptaplex PCR was applied to Salmonella-spiked blood cultures directly and provided diagnostic results after 12- or 13.5-h blood culture. Additionally, it demonstrated diagnostic performance with colonies recovered from a 6-h blood culture. This study provides a reliable DNA-based tool for diagnosing typhoidal Salmonella serovars that may be useful in clinical microbiology and epidemiology.

Detection of Cucumber green mottle mosaic virus in Bottle Gourd Seeds by RT-PCR (RT-PCR에 의한 박 종자의 오이녹반모자이크바이러스 검정)

  • Lee, Sook-Kyung;Song, Wan-Yeob;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • Cucumber green mottle mosaic virus (CGMMV) was a major pathogen of watermelon and had affected seriously to watermelon production in Korea. Rapid and sensitive detection method of CGMMV associated with bottle gourd (Lagenafia siceraria) seeds was developed by using RT-PCR in this study. A pair of primeri Wmfl and Wmrl, specific for CGMMV was designed from coat protein gene sequences of CGMMV-W and used for amplifying 420 bp product in RT-PCR. To simplify the virus extraction procedure and reduce an inhibitor from the extract for the RT-PCR, some methods using ethanol precipitation, double filtration, polyethylene glycol precipitation and phenol/chloroform/isoamyl alcohol extraction procedure were compared and the phenol/chloroform/isoamyl alcohol extraction procedure was selected by its enhanced sensitivity. This detection method using the selected extraction step and the primers for RT-PCR could reliably detect an infected level of one CGMMV-infested seed in 1,000 seeds. This rapid and sensitive RT-PCR assay provides auseful tool for the specific detection of CGMMV in bottle gourd seed samples containing high levels of back-ground inhibitors.

PCR-RFLP and Sequence Analysis of the rDNA ITS Region in the Fusarium spp.

  • Min, Byung-Re;Lee, Young-Mi;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.66-73
    • /
    • 2000
  • To investigate the genetic relationship among 12 species belonging to the Fusarium section Martiella, Dlaminia, Gibbosum, Arthrosporiella, Liseola and Elegans, the internal transcribed spacer(ITS) regions of ribosomal DNA (rDNA) were amplified with primer pITS1 and pITS4 using the polymerase chain reaction(PCR). After the amplified products were digested with 7 restriction enzymes, restriction fragment length polymorphism (RFLP) patterns were analyzed. The partial nucleotide sequences of the ITS region were determined and compared. Little variation was observed in the size of the amplified product having sizes of 550bp or 570bp. Based on the RFLP analysis, the 12 species studied were divided into 5 RFLP types. In particular, strains belonging to the section Martiella were separated into three RFLP types. Interestingly, the RFLP type of F. solani f. sp. piperis was identical with that of isolates belonging to the section Elegans. In the dendrogram derived from RFLP analysis of the ITS region, the Fusarium spp. examined were divided into two major groups. In general, section Martiella excluding F. solani f. sp. piperis showed relatively low similarity with the other section. The dendrogram based on the sequencing analysis of the ITS2 region also gave the same results as that of the RFLP analysis. As expected, 5.8S, a coding region, was highly conserved, whereas the ITS2 region was more variable and informative. The difference in the ITS2 region between the length of F. solani and its formae speciales excluding F. solani f. sp. piperis and that of other species was caused by the insertion/deletion of nucleotides in positions 143-148 and 179-192.

  • PDF