• Title/Summary/Keyword: ITS specific primer

Search Result 145, Processing Time 0.029 seconds

Development of RT-PCR Kit for Diagnosis of Pathogenic Agent of Ginseng Root Rot in the Ginseng Field (인삼포장에서 뿌리섞음병원균의 진단을 위한 RT-PCR KIT의 개발)

  • 도은수
    • Korean Journal of Plant Resources
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Cylindrocarpon destructans is the major pathogen inducing the root rot disease in ginseng. Up to now, there is no reliable and convenient method to analyze the spore density or population of this pathogen in ginseng-growing soil or any contaminated farmlands. Therefore, it will be very valuable to develop a new and reliable method in detecting the spore of this pathogen. In this study, a molecular biological technique using two step nested PCR method, was developed. Two universal ITS primers, ITS5F and ITS4R were used in the first round of PCR to amplify a fragment of ITS region from the genomic DNA of C. destructans. The specific prmers Nest 1 and Nest 2 were designed and used in the second round of PCR to amplify a inner fragment from the first round PCR product of C. destructans. C. destructans spore, only soil samples from the diseased ginseng farm produced the positive bands, suggesting its usefulness in detecting the C. destructans spores in soil samples. Thus it is recommended to first extract the whole genomic DNA from soil samples and use it for the PCR reaction, thereby eliminating the inhibitory activity of soil components.

Notes on Five Unrecorded Endophytic Fungi Isolated from Coniferous Leaves and Orchid Roots in Korea (한국에 서식하는 침엽수의 잎과 난초과 식물의 뿌리에서 분리한 5종의 국내 미기록 내생균)

  • Park, Hyeok;Lee, Bong-Hyung;Bae, Yu-Ra;Kim, Dong-Yeo;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.365-370
    • /
    • 2016
  • We collected leaves of Pinus koraiensis and Thuja koraiensis and roots of Bletilla striata from various sites in Korea. The leaf and root samples were surface-sterilized and endophytic fungi were isolated. Fungal isolates were identified based on their morphological characteristics and a phylogenetic analysis of internal transcribed spacer regions, large subunit regions, and the ${\beta}$-tubulin gene. Consequently, we identified five species of endophytic fungi, namely Colletotrichum simmondsii, Fusarium sterilihyphosum, Diatrypella pulvinata, Ochroconis globalis, and Sphaeria chrysosperma. These species have not been previously reported in Korea and we report them here with descriptions and illustrations.

Rapid and Accurate Species-Specific Detection of Phytophthora infestans Through Analysis of ITS Regions in Its rDNA

  • Kim, Kyoung-Su;Lee, Youn-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.651-655
    • /
    • 2000
  • Polymerase chain reaction (PCR) was used to specifically detect Phytophthora infestans by analyzing the sequences of the ribosomal internal transcribed spacer regions (ITS) in the rDNA of the Phytophthora species. Based on the sequence data, PISP-1 together with the ITS3 primer were used to detect p. infestans. A single ca. 450 bp segment was observed in P. infestans, but not in the other fungal or bacterial isolates. Two factors, the annealing temperature and template DNA quantity, were investigated to determine the optimal conditions. Using these species-specific primers, a unique band was obtained within annealing temperatures of $55^{\circ}C$-$61^{\circ}C$ and template DNA levels of 10 pg-100 ng.

  • PDF

Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region

  • Li, Guisheng;Cui, Yan;Wang, Hongtao;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.326-329
    • /
    • 2017
  • Background: Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. Methods: The mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. Results: An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. Conclusion: An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

Identification of Genes Suitable for DNA Barcoding of Morphologically Indistinguishable Korean Halichondriidae Sponges

  • Park, Mi-Hyun;Sim, Chung-Ja;Baek, Jina;Min, Gi-Sik
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.220-227
    • /
    • 2007
  • The development of suitable genetic markers would be useful for defining species and delineating the species boundaries of morphologically indistinguishable sponges. In this study, genetic variation in the sequences of nuclear rDNA and the mitochondrial cytochrome c oxidase subunit 1 and 3 (CO1 and CO3) regions were compared in morphologically indistinguishable Korean Halichondriidae sponges in order to determine the most suitable species-specific molecular marker region. The maximal congeneric nucleotide divergences of Halichondriidae sponges in CO1 and CO3 are similar to those found among anthozoan cnidarians, but they are 2- to 8-fold lower than those found among genera of other triploblastic metazoans. Ribosomal internal transcribed spacer regions (ITS: ITS1 + ITS2) showed higher congeneric variation (17.28% in ITS1 and 10.29% in ITS2) than those of CO1 and CO3. Use of the guidelines for species thresholds suggested in the recent literature indicates that the mtDNA regions are not appropriate for use as species-specific DNA markers for the Halichondriidae sponges, whereas the rDNA ITS regions are suitable because ITS exhibits a low level of intraspecific variation and a relatively high level of interspecific variation. In addition, to test the reliability of the ITS regions for identifying Halichondriidae sponges by PCR, a species-specific multiplex PCR primer set was developed.

Identification of Orchid Mycorrhizal Fungi Isolated from Terrestrial Orchids in Mt. Hambaek, Korea (함백산의 난초과 식물의 뿌리에서 난균근균의 분리 및 동정)

  • Lee, Bong-Hyung;Han, Han-Kyeol;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.43 no.2
    • /
    • pp.129-132
    • /
    • 2015
  • In this study, orchid mycorrhizal fungi (OMF) were isolated from four terrestrial orchids on Mt. Hambeak, Platnathera chlorantha, Platnathera mandarinorum, Cephalanthera falcate, and Cephalanthera longibracteata. OMF were identified using morphological and sequences analysis of fungal internal transcribed spacer (ITS) regions by specific primer of basidiomycetous orchid mycorrhizas; ITS1-OF and ITS4-OF. Four species of orchid mycorrhizal fungi were identified as Ceratobasidium sp, Epulorhiza anaticula, Tulasnella calospora and Tulasnella sp.

Expressions of Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptor Gene in the Rat Uterus (흰쥐 자궁에서 Pituitary Adenylate Cyclase-Activating Polypeptide와 수용체 유전자의 발현)

  • 이성호
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • The present study was performed to analyze the gene expressions of pituitary adenylate cyclase-activating polypeptide(PACAP) and its receptor in the rat uterus, a candidate for novel extrahypothalamic source and target. The PACAP cDNA fragments corresponding to the common exon region which is found in both the rat hypothalamus and testis were produced from all tissue samples including the rat uterus by reverse transcriptionpolymerase chain reaction (RT-PCR). No PCR product was amplified from the rat hypothalamic, pituitary, ovarian and uterine samples when the 5' primer corresponding to the testis-specific exon 1 region was used, while the predicted size of product was detected from the testis sample. RT-PCR using the uterine RNA and specific primers for the PACAP receptor yielded products with predicted sizes. Transcripts for the rat uterine PACAP receptor were identified as type I isoforms with hip-hop and hip- or hop-type inserts. After pregnant mare's serum gonadotropin (15 IU) treatment of immature rats (day 25), the level of PACAP mRNA was increased in 24 h and 48 h group, and was declined to the lowest in 72 h group. The present study shows the presence of transcripts for PACAP and its receptor isoform in the rat uterus. These finding ssuggest that the uterine PACAP ight act as a novel autocrine and/or paracrine factor via its specific receptors on the reglulation of rat uterine function and physiology during the reproductive cycle.

  • PDF

Discrimination of Aralia continentalis from other Herbs Identified as 'Angelicae Pubescentis Radix' by Multiplex Polymerase Chain Reaction (PCR) (Multiplex PCR을 이용한 독활 류 식물로부터 Aralia continentalis 감별)

  • Lee, Gwon-Jin;Doh, Eui-Jeong;Ko, Byong-Seob;Lee, Mi-Young;Oh, Seung-Eun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.5
    • /
    • pp.329-337
    • /
    • 2010
  • 'Angelicae Pubescentis Radix' (APR) is an important oriental medical preparation. In Korea, Aralia continentalis has been recognized as the source plant of APR. Aralia cordata, which is difficult to distinguish from A. continentalis, and Heracleum moellendorffii, which is frequently used in lieu of A. continentalis, are traded in Korean herbal markets. In contrast, in China, Angelica pubescens is recognized as the source plant of APR. In this study, we devised a method not only to discriminate A. contientalis from A. cordata, but also to discriminate both A. contientalis and A. cordata from H. moellendorffii and A. pubescens. Based on the discrepancy in the sequences of specific regions of ITS, we designed a Cont F/ Cont R primer set to amplify a 173 bp PCR band that appears only in A. continentalis. Additionally, we designed an Ara F/ Ara R primer set to amplify a 278 bp PCR band that appears in both A. continentalis and A. cordata. Using these primer sets and the ST R primer to confirm the PCR amplification results, we developed a simple multiplex PCR method for differentiating A. continentalis from A. cordata and to concurrently differentiate both A. continentalis and A. cordata from other APR herbs.

Genetic Variation in Flammulina velutipes (팽이버섯의 유전적 변이)

  • Kim, Jong-Bong;Jeong, Ja-In
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1434-1442
    • /
    • 2011
  • A genetic variation within 29 strains of F. velutipes was analyzed by internal transcribed spacer (ITS) sequence analysis and random amplified polymorphic DNA (RAPD). Seven hundred and twenty base pairs were sequenced during the analysis of the ITS region, but no significant variation was observed among the 29 strains of F. velutipes. Sixteen out of 40 random primers amplified polymorphic RAPD fragment patterns. The polymorphic levels of RAPD bands by some primers (OPA-2,4,3,9,10,20) were very high in all 29 strains, with 3,030 fragments ranging between 200 and 2,000 bp. Intraspecific genetic dissimilarity of the 29 strains was calculated to range from 3.3% to 45% by Nei-Li's method using these 3,030 RAPD bands. The genetic variation among Korean strains was relatively high, with dissimilarities ranging between 17% and 38.6%. In the Neighbor-Joining analysis using the genetic dissimilarities based on RAPD, all 29 strains were classified into 5 clusters. Strains in each cluster showed specific characteristics according to their origin and strains. These results suggested that OPA and OPB primers could be used for developing molecular genetic markers and screening of unidentified (F. velutipes) strains.

Detection and Typing of Human Papillomavirus in Cutaneous Common Warts by Multiplex Polymerase Chain Reaction (Multiplex PCR 기법을 이용한 보통사마귀 내 인유두종바이러스 검출 및 분류)

  • Choi, Soon-Yong;Lim, Jong-Ho;Kim, Eun-Jung;Kim, Hei-Sung;Kim, Beom-Joon;Kang, Hoon;Park, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.947-952
    • /
    • 2011
  • A number of epidemiological studies have identified human papillomavirus (HPV) types 1, 2, 3, 4, 7, 10, 27, 57, and 65 in cutaneous common warts. However, identification of the HPV subtype by conventional polymerase chain reaction (PCR) is time consuming with its multi-step laboratory process. In this study, we aim to develop a specific one-step multiplex polymerase chain reaction method which capably identifies six different HPV genotypes related to common warts. By HPV DNA sequence analysis, 6 pairs of specific primers were designed from the intergenic regions of genes L1 to E6, and from genes E2 to L2. DNA sequence analysis with the L1 gene sequence of the sample was performed to measure the specificity of multiplex PCR. HPV-1, -2, -3, -4, -27, and -57 were identified without cross amplification in 109 out of 129 samples. The sensitivity and specificity of our set of primers in detecting HPV were 85% and 99.5%, respectively. For the 20 samples where HPV type was not identifiable by our batch of primer sets, multiplex PCR with an additional set of HPV primers was done, where 7 were found positive for HPV-7 or -65. Our results demonstrate that the newly designed multiplex PCR can rapidly detect the specific HPV subtype involved in common warts with high accuracy.