• Title/Summary/Keyword: ITS marker

Search Result 847, Processing Time 0.028 seconds

Molecular Cloning of a $\beta$-D-Galactosidase Gene from Lactococcus lactis subsp. lactis 7962

  • CHANG, HAE-CHOON;YANG-DO CHOI;HYONG-JOO LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.386-390
    • /
    • 1996
  • The ${\beta}$-galactosidase gene from Lactococcus lactis subsp. lactis ATCC 7962 was cloned and its enzymatic properties were characterized, with a view to assessing its potential use as a selection marker in the food-grade cloning vector. Chromosomal DNA from L. lactis subsp. lactis 7962 was cleaved with PstI and ligated into pBR322 for transformation into Escherichia coli TGl. Transformants showing ${\beta}$-galactosidase activity possessed the pBR322 plasmid containing a 10 kilobase (kb) PstI fragment and this plasmid was named pCKL11. The cloned ${\beta}$-galactosidase gene came from the chromosomal DNA of L. lactis subsp. lactis 7962 was confirmed by Southern hybridization. A restriction map of pCKL11 was constructed from the cleavage of both pCKL11 and the purified 10kb insert fraqment. The. optimum pH of the ${\beta}$-galactosidase determined with the E. coli harboring the pCKL11 was 7.0. The optimum temperature was $50^{\circ}C$, while the pI of the enzyme was 7.4. These values were the same as those of the enzyme from the parent strain.

  • PDF

Molecular Phylogenetic Studies of Korean Hydrocotyle L. (한국산 피막이속(Hydrocotyle L.) 식물의 분자계통학적 연구)

  • Choi, Kyoung-Su;Park, Seon-Joo
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.490-497
    • /
    • 2012
  • Phylogenetic analyses were conducted to evaluate relationships of 5 taxa of Korean Hydrocotyle, H. spp. found in the Ulleung island including one outgroup (Centella asiatica). The molecular phylogenetic methods based on nuclear ribosomal DNA ITS region and cpDNA trnH-psbA region. Centella asiatica was used outgroup for analysis. As the result, genus Korean Hydrocotyle were grouped by 94% bootstrap value. Korean Hydrocotyle was grouped by four clades; Clade I-H. maritima, H. sibthorpides and H. yabei clade Clade II-H. nepalensis clade clade III-H. ramiflora clade clade IV-H. spp. clade. H. maritima, H. sibthorpides and H. yabei was not distinguished, seperately. H. spp. was distinctly distinguished other Korean Hydrocotyle.

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

  • Lee, Seon Yong;Kim, Jun-Kyum;Jeon, Hee-Young;Ham, Seok Won;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.515-522
    • /
    • 2017
  • CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-$1{\beta}$ and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-$1{\beta}$ gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-$1{\beta}$ signaling pathway.

Brain Hypoxia Imaging (뇌 저산소증 영상)

  • Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The measurement of pathologically low levels of tissue $pO_2$ is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowaday have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. $^{18}F-MISO$ PET and $^{99}mTc-EC-metronidazole$ SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using $^{123}I-IAZA$ in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato

  • Kim, Ji-Eun;Oh, Sang-Keun;Lee, Jeong-Hee;Lee, Bo-Mi;Jo, Sung-Hwan
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.

Circulating DNA in Egyptian Women with Breast Cancer

  • Ibrahim, Iman Hassan;Kamel, Mahmoud M;Ghareeb, Mohamed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2989-2993
    • /
    • 2016
  • The commonest cancer in Egyptian females occurs in the breast cfDNA is a non-invasive marker for tumor detetion and prognostic assessment in many types of cancer including breast cancer. This study aimed to assess the role of cfDNA and its fragmentation pattern in breast cancer prognosis and treatment response. Forty female patients with malignant breast tumors and a comparable group of healthy blood donors were enrolled prospectively. cfDNA levels and fragmentation patterns were investigated after cfDNA extraction, gel electrophoresis and gel analysis. The percentage of breast cancer patients positive for cfDNA (92.5%) was significantly higher than that of controls (55%). Also, mean concentration of cfDNA was significantly higher than in the control group (P<0.05). Most Her-2 positive patients had long cfDNA fragments, this being significant as compared to Her-2 negative patients (P<0.05). Metastasis was also positively linked to significantly higher cfDNA (P<0.05) and the mean cfDNA integrity index was significantly higher in non-responders compared to treatment responders (P<0.05). In conclusion, both qualitative and quantitative aspects of cfDNA and its different fragments in breast cancer patients could be related to prognosis, metastasis and treatment response. Long cfDNA fragments could be particularly useful for prediction purposes.

Development of Molecular Marker to Detect Citrus Melanose Caused by Diaporthe citri from Citrus Melanose-like Symptoms

  • Choi, Cheol-Woo;Jung, Kyung-Eun;Kim, Min-Ju;Yoon, Su-Hyeon;Park, Suk-Man;Jin, Seong-Beom;Hyun, Jae-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.681-686
    • /
    • 2021
  • It is difficult to distinguish melanose and melanoses-like symptoms with the naked eye because they appear similar. To accurately detect melanose symptoms caused by Diaporthe citri from melanose-like symptoms, we developed PCR-based specific primers Dcitri by aligning the internal transcribed spacer (ITS) region of D. citri with the ITS of Diaporthe cytosporella, Diaporthe foeniculina, Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria citri, and Fusarium oxysporum found on citrus peel. PCR results showed that the specific product was amplified in D. citri but not in other isolates including, C. gloeosporioides, B. cinerea, A. citri, F. oxysporum. In addition, specific products were observed in melanose symptoms caused by D. citri but not in melanose-like symptoms, such as copper-injury, sunscald, damages by yellow tea thrips, and pink citrus rust mite. Using the Dcitri primers developed in this study, it is expected that melanose caused by D. citri could be accurately distinguished from melanose-like symptoms.

Inhibitory Effect of Fermented Spanish Extract on Inorganic phosphate-induced Vascular Calcification in ex vivo Aortic Rings (발효 시금치 추출물의 무기인산염에 의해 유도된 혈관 석회화 저해 효과)

  • Lee, Sang Hee;Hong, Sun Mi;Sung, Mi Jeong
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.3
    • /
    • pp.248-255
    • /
    • 2022
  • Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.

Evaluation of the inhibitory effect of Gynostemma pentaphyllum extracts on CYP450 enzyme activities using LC-MS/MS

  • Jun Sang Yu;Young Seok Ji;So Young Jo;Xiang-Lan Piao;Hye Hyun Yoo
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.116-119
    • /
    • 2023
  • Gynostemma pentaphyllum (Thunb.) Makino extract, a natural product with a history of traditional use, has gained attention for its potential health benefits. This study aimed to investigate its effects on key cytochrome P450 (CYP) enzymes using LC-MS/MS. Human liver microsomes and cDNA-expressed CYP2C8, CYP2C9, CYP2C19, and CYP3A4 supersomes were employed. Enzyme activity was assessed based on the formation of CYP-specific marker metabolites. The resulting data showed that the extract exhibited inhibitory effects on CYP2C8, CYP2C9, CYP2C19, and CYP3A4. Thus, G. pentaphyllum extract may influence the pharmacokinetics of drugs metabolized by CYP2C8, CYP2C9, CYP2C19, and CYP3A4. These findings emphasize the importance of considering potential herb-drug interactions when incorporating this extract into therapeutic regimens or dietary supplements.